Microscope optique
Un microscope optique de base.
Le microscope optique ou microscope photonique est un instrument d'optique muni d'un objectif et d'un oculaire qui permet de grossir l'image d'un objet de petites dimensions (ce qui caractérise sa puissance optique) et de séparer les détails de cette image (et son pouvoir de résolution) afin qu'il soit observable par l'œil humain. Il est utilisé en biologie, pour observer les cellules, les tissus, en pétrographie pour reconnaître les roches, en métallurgie et en métallographie pour examiner la structure d'un métal ou d'un alliage.
Il ne faut pas le confondre avec la loupe binoculaire qui n'exige pas des échantillons plats de faible épaisseur, ou réfléchissants, et permet d'observer des pièces naturelles sans préparation en grossissant l'image d'un facteur peu élevé, mais en gardant une vision stéréoscopique propice à l'examen macroscopique révélateur de grains, de criques, de fissures, etc.
Actuellement, les microscopes optiques les plus puissants possèdent un grossissement de ×2500.
Du fait des limites du spectre de la lumière visible, les microscopes optiques, sous réserve de grossissement suffisant, permettent d'observer des cellules (mais pas toutes les unités et sous-unités cellulaires), des champignons, des protozoaires, des bactéries mais ne permettent pas d'observer de virus.
Histoire
Il est difficile de dire qui a inventé le microscope composé. On dit souvent que l'opticien hollandais Hans Janssen et son fils Zacharias Janssen fabriquèrent le premier microscope en 1595, mais ceci provient d'une déclaration de Zacharias Janssen lui-même au milieu du XVIIe siècle. Zacharias Janssen est né vers 1570.
Un autre favori au titre d'inventeur du microscope est Galilée. Il a développé un occhiolino, un microscope composé d'une lentille convexe et d'une autre concave en 1609. Athanasius Kircher décrit son microscope en 16461 qu'il utilise pour l'observation du sang.
-
-
Microscope optique (1751).
-
Microscope de Cuff (1760).
-
Microscope de François-Laurent Villette (1765).
-
Microscope Zeiss, Jena (1879).
-
Modèle Voigt et Hochgesang (1890).
Un dessin par Francesco Stelluti de trois abeilles figure sur le sceau du pape Urbain VIII (1623-1644) et passe pour la première image de microscopie publiée3. Christian Huygens, un autre Hollandais, a développé à la fin du XVIIe siècle un oculaire simple à deux lentilles corrigé des aberrations chromatiques, ce qui fut un grand pas en avant dans le développement du microscope. L'oculaire de Huygens est toujours fabriqué aujourd'hui, mais souffre d'un champ assez réduit et d'autres problèmes mineurs. On attribue en général à Antoni van Leeuwenhoek (1632-1723) le fait d'avoir attiré l'attention des biologistes sur les utilisations du microscope, même si des loupes ordinaires étaient déjà fabriquées et utilisées au XVIe siècle. Les microscopes artisanaux de Van Leeuwenhoek étaient des instruments simples et de taille réduite comprenant une lentille unique mais forte. En comparaison, les systèmes à plusieurs lentilles restaient difficiles à mettre au point et il fallut pas moins de 150 ans de développement des optiques avant que le microscope composé puisse livrer une qualité d'image équivalente à celle des microscopes simples de Van Leeuwenhoek. Néanmoins, et malgré de nombreuses revendications, on ne peut pas considérer Antoni Van Leeuwenhoek comme l'inventeur du microscope composé. Robert Hooke est aussi l'un des premiers à en concevoir.
Première approche
Principe du microscope optique de base
Principe d'un microscope.
Animation du fonctionnement d'un microscope.
Le microscope optique est un système optique à lentilles dont le but est d'obtenir une image agrandie de l'objet observé.
L'objet à observer est placé devant le premier groupe optique appelé « objectif ». Si l'objet est au-delà de la distance focale, cela forme une image réelle renversée de taille différente ; l'image est plus grande que l'objet si celui-ci est situé à une distance inférieure au double de la distance focale de l'objectif.
Le deuxième groupe optique du côté de l'observateur est l'oculaire : il est positionné de sorte que l'image soit dans son plan focal. Ainsi, l'œil observe une image « à l'infini » (pour un observateur standard), donc en relâchant les muscles chargés de l'accommodation, offrant un meilleur confort visuel.
Principe d'un microscope simplifié.
Il s'agit d'un système centré dioptrique, composé en partie de doublets pour en corriger certaines des aberrations optiques.
A contrario d'autres systèmes optiques qui sont définis par leur grossissement optique (télescope) ou leur grandissement (appareil photographique), le terme approprié, pour le microscope, est sa puissance, rapport de l'angle, sous lequel est vu l'objet à travers l'instrument, à la longueur de cet objet.
La technique d'illumination la plus utilisée en microscopie à champ large classique est l'illumination de Köhler, qui garantit une qualité d'image optimale.
Constitution du microscope
Schéma d'un microscope optique.
De bas en haut :
- miroir : sert à réfléchir la lumière ambiante pour éclairer l'échantillon par en dessous, dans le cas d'un échantillon transparent (par exemple une lame mince en biologie ou en géologie, ou un liquide) ;
- source de lumière artificielle de meilleure température de couleur et de stabilité et par l'usage d'un condenseur qui permet à cette lumière de remplir d'une façon homogène et régulière le champ observé, et surtout de ne pas faire voir, par son réglage adéquat, les détails mécaniques de la source de lumière (spires du filament de l'ampoule). La source d'éclairage peut être plus élaborée et comporter un boîtier indépendant, éventuellement en lumière polarisée ou ultraviolet, pour faire ressortir certaines propriétés chimiques de la matière, ou éclairer l'échantillon par-dessus (notamment en métallurgie) ;
- diaphragme : ouverture de diamètre variable permettant de restreindre la quantité de lumière qui éclaire l'échantillon. Comme pour un appareil photo, le diaphragme permet principalement de faire varier la profondeur de champ (ouvert à fond pour des coupes histologiques et plus fermé pour des recherches d'œufs de parasites digestifs) ;
- platine porte-échantillon : où l'on pose l'échantillon ; les « valets » servent à tenir l'échantillon lorsque celui-ci est mince (par exemple une lame). La platine peut être mobile (gauche-droite et avant-arrière), ce qui permet de balayer l'échantillon et de sélectionner la partie observée ;
- objectifs : lentille ou ensemble de lentilles réalisant le grossissement. Il y a en général plusieurs objectifs, correspondant à plusieurs grossissements, montés sur un barillet. Certains objectifs sont dits à immersion car leur puissance ne peut être atteinte qu'en éliminant la lame d'air entre l'échantillon couvert par la lamelle et la frontale de l'objectif. On utilise pour cela de l'huile de cèdre ou des huiles de synthèse dont l'indice de réfraction est proche de celui du verre ;
- mise au point rapide et micrométrique ; pour que l'image soit nette, il faut que l'objet soit dans le plan focal de l'objectif ; ces molettes font monter et descendre l'ensemble objectif-oculaire avec un système de crémaillère, afin d'amener le plan focal sur la zone de l'échantillon à observer ;
- oculaire : lentille ou ensemble de lentilles formant l'image d'une manière reposante pour l'œil ; les rayons arrivent parallèles, comme s'ils venaient de très loin, ce qui permet un relâchement des muscles contrôlant le cristallin ; deux oculaires placés sur une tête dite binoculaire rend plus confortable l'observation (même si elle n'apporte pas de vision stéréoscopique).
L'oculaire peut être remplacé par un appareil photographique, ou — dans le cas de la vidéomicroscopie — par une caméra vidéo ou une caméra CCD pour faire une acquisition numérique. Ceci permet de faire l'observation sur un moniteur vidéo (écran de type télévision) et de faciliter l'utilisation et le traitement des images (impression, traitement informatique, télémédecine, etc.).
Limites du microscope optique
La résolution d'un microscope désigne sa capacité à séparer des détails très voisins. Indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles, la résolution du microscope optique est fondamentalement limitée par la diffraction de la lumière. En effet, du fait de la diffraction, l'image d'un point n'est pas un point, mais une tache (la tache d'Airy ou plus généralement la fonction d'étalement du point - PSF). Ainsi, deux points distincts mais voisins auront pour images deux taches dont le recouvrement peut empêcher de distinguer les deux points images : les détails ne sont alors plus résolus.
Selon la théorie d'Abbe, la limite de résolution (transverse) d d'un microscope, c'est-à-dire la plus petite distance en dessous de laquelle deux points voisins ne seront plus distingués, peut être exprimée simplement à l'aide de la longueur d'onde d'illumination λ , de l'indice de réfraction n en sortie d'objectif, et du demi angle du cône de lumière maximum accessible α .
- d = λ 2 n sin α = λ 2 NA
où NA désigne le produit n sin α ou ouverture numérique de l'objectif. On peut donc augmenter la résolution de deux manières :
- en augmentant l'indice de réfraction. Ceci peut être réalisé en utilisant un objectif à immersion : on immerge la frontale de l'objectif dans un liquide dont l'indice de réfraction est proche du maximum de 1,5 - celui du verre ;
- en diminuant la longueur d'onde. Toutefois, si on reste dans la lumière visible, il n'est pas possible de descendre en dessous de 400 nm.
La limite de résolution d'un microscope photonique classique est d'environ 0,2 μm. Le microscope électronique en transmission atteindra, lui, une limite 100 fois plus petite.
Amélioration de la résolution en microscopie optique
De nombreuses techniques de microscopie photonique permettent d'augmenter la résolution. Lorsqu'elles dépassent la limite d'Abbe, elles sont dites « super résolution » ou nanoscopies. Citons entre autres :
- les techniques d'illumination structurée linéaires (par exemple, le microscope SIM) et les techniques tomographiques qui cherchent à récupérer les hautes fréquences spatiales coupées dans un microscope classique. Ces techniques permettent d'augmenter la résolution, sans toutefois dépasser la limite d'Abbe.
- les techniques utilisant les ondes évanescentes (SNOM) ;
- les techniques utilisant une mise en forme de la réponse impulsionnelle optique (PSF) : microscopie confocale, la microscopie STED (super-résolue) ;
- les techniques utilisant la localisation successive de molécules individuellement photoactivées, la « microscopie de localisation par photoactivation » (PALM, Betzig et al., 2006) et la microscopie « par reconstruction stochastique optique » (STORM, Rust et al., 2006). Ces deux microscopies sont identiques dans le principe, mais n'utilisent pas le même type de fluorophore.
Utilisations et perfectionnement
Microscopie en réflexion
Quand on utilise un microscope classique, on l'utilise en transmission, c'est-à-dire que la lumière traverse l'échantillon observé. Il est également possible de travailler « en réflexion ». Dans ce cas, l'échantillon est illuminé du même côté que l'observateur, soit par le dessus pour un microscope droit et par le dessous dans le cas des microscopes inversés utilisés en métallographie ou en cristallographie. La lumière produite par la source passe une première fois par l'objectif, arrive sur l'échantillon, est réfléchie et repasse par l'objectif pour observation ce qui nécessite plusieurs jeux de miroirs ou prismes.
La microscopie en réflexion permet d'examiner des objets opaques, ou trop épais pour la transmission. En contrepartie bien entendu, elle ne peut donner que des informations sur la surface de l'échantillon dans le cas de l'observation en lumière blanche ; en lumière polarisée, elle permet de révéler les orientations de grains des constituants des minéraux ou métaux.
Un cas classique est la métallographie où l'on réalise des observations de pièces de métal appelées métallographies de cette manière. Comme dit plus haut le microscope est souvent inversé, la pièce à observer placée posée sur la plaque support (en général percée d'un trou circulaire).
Éclairage épiscopique
A contrario des éclairage diascopiques (dia - à travers), l'éclairage épiscopique (épi - sur) permet d'observer des objets opaques en couleur et en leur donnant un rendu plus « naturel ».
L'idée d'un tel éclairage est ancienne, puisqu'en 1740, Descartes a inspiré Lieberkühn qui a créé pour ses observations au microscope un miroir en argent entourant l'objectif, le foyer de ce miroir ciblant la préparation.
Microscopie en champ clair
La microscopie optique en champ clair (ou « à fond clair ») est la plus simple et la plus ancienne des techniques de microscopie. Les longueurs d'onde utilisées (spectre visible) limitent le pouvoir séparateur de ce microscope à 0,2 µm pour ceux d'entre eux qui ont les meilleures optiques.
L'illumination se fait par transmission de lumière blanche, c'est-à-dire que l'échantillon est illuminé par-dessous et observé par-dessus. Les limitations de cette technique sont principalement un faible contraste de la plupart des échantillons biologiques et une résolution faible due au flou créé par la matière hors du plan focal. En contrepartie, la technique est simple et l'échantillon ne nécessite qu'une préparation minime.
Si l'échantillon est éclairé par-dessus, le microscope est dit « microscope inversé ». L'objectif est alors situé en dessous de la préparation, et le tube porte oculaire redresse les faisceaux de lumière pour que les oculaires soient « normalement » positionnés pour l'utilisateur.
Microscopie en champ sombre
Le microscope à fond noir qui utilise le principe de la « microscopie en champ sombre » permet d'améliorer le contraste d'échantillons transparents mais non teintés4.
L'illumination de champ sombre utilise une source de lumière alignée avec soin afin de minimiser la quantité de lumière directement transmise et de ne collecter que la lumière diffusée par l'échantillon. Elle permet d'augmenter considérablement le contraste, particulièrement pour les échantillons transparents, tout en ne nécessitant que peu d'équipement et une préparation d'échantillon simple. Toutefois, cette technique souffre d'une faible intensité lumineuse collectée et est toujours affectée par la limite de résolution.
L'illumination de Rheinberg est une variante de l'illumination en champ sombre dans laquelle des filtres transparents de couleur sont insérés juste avant le condenseur, de sorte que les rayons lumineux plus ou moins obliques soient colorés différemment (le fond de l'image peut être bleu tandis que l'échantillon apparaît jaune brillant). La limite de résolution est la même que celle en champ sombre. D'autres combinaisons de couleurs sont possibles, mais leur efficacité est assez variable5.
La microscopie à fond noir est particulièrement adaptée aux échantillons frais et autorise la microcinématographie (par exemple de bactéries en déplacement). Elle n'a pas d'intérêt pour les objets colorés (frottis ou coupes colorés). Elle est notamment utile pour :
- observer des êtres ou objets plats à structure régulière et transparents tels que diatomées, radiolaires…
- observer des formations filiformes (ex : flagelles, fibres, bactéries, certains cristaux…).
- observer des objets punctiformes ou linéaires très fins, dont la taille serait limite pour la séparation du microscope à fond clair. Ces objets donneront une image de points ou traits très lumineux (exemple : Treponema pallidum, agent de la syphilis) et aux contours nets si l'objet est suffisamment épais, ou pour les bactéries les plus grandes (exemple : Borrelia, agent de la maladie de Lyme).
Illumination oblique
L'utilisation d'une illumination oblique (par le côté) donne une image d'apparence tridimensionnelle et peut mettre en valeur des aspects invisibles autrement. C'est le principal avantage. Les limitations sont les mêmes que celles de la microscopie en champ clair.
Microscopie en lumière polarisée
En microscopie en lumière polarisée, on place l'échantillon entre un polariseur et un analyseur afin de détecter les variations de polarisation de la lumière après la traversée de l'échantillon. Cette technique est très utile pour l'observation des milieux biréfringents, notamment en minéralogie.
Microscopie en fluorescence
Quand certains composés sont illuminés par une source de lumière de haute énergie, ils émettent alors de la lumière à une énergie plus basse. C'est le phénomène de fluorescence. La microscopie en fluorescence (ou en épifluorescence) est une technique utilisant un microscope optique équipé de l'émetteur laser d'un rayonnement photonique ayant une longueur d'onde précise. Ce rayonnement ira exciter une molécule cible dotée de propriétés fluorescentes. Elle permet de tirer profit du phénomène de fluorescence et de phosphorescence, au lieu de, ou en plus de l'observation classique par Réflexion (physique) ou absorption de la lumière visible naturelle ou artificielle6,7.
Cette méthode est aujourd'hui de première importance dans les sciences de la vie grâce, notamment, au marquage de structures cellulaires ou tissulaires par des molécules fluorescentes, telles que la rhodamine ou la fluorescéine. Elle peut être très sensible, autorisant même la détection de molécules isolées. Différentes structures ou composés chimiques peuvent aussi être détectés simultanément en utilisant des composés différents qui seront différenciés par leur couleur de fluorescence.
Le microscope de fluorescence par réflexion totale interne (TIRF, total internal reflection fluorescence microscopy), ou microscope à onde évanescente, est un type particulier de microscope optique à fluorescence permettant d'examiner une tranche très fine d'un échantillon (moins de 200 nm d'épaisseur), grâce à un mode d'illumination particulier : la réflexion totale interne.
Microscope à contraste de phase
Le contraste de phase est une technique largement utilisée qui permet de mettre en valeur les différences d'indices de réfraction comme différence de contraste. Elle a été développée par le physicien hollandais Frederik Zernike dans les années 1930 (il reçut pour cela le prix Nobel en 1953). Le noyau d'une cellule par exemple apparaîtra sombre dans le cytoplasme environnant. Le contraste est excellent, néanmoins cette technique ne peut être utilisée avec les objets épais. Bien souvent, un halo se forme autour des petits objets qui peut noyer des détails.
Le système consiste en un anneau circulaire dans le condenseur qui produit un cône de lumière. Ce cône est superposé à un anneau de taille similaire dans l'objectif. Chaque objectif a un anneau de taille différente, aussi il est nécessaire d'adapter le condenseur à chaque changement d'objectif. L'anneau dans l'objectif a des propriétés optiques spéciales : il réduit l'intensité de la lumière directe et, ce qui est plus important, il crée une différence de phase artificielle d'un quart de longueur d'onde qui crée des interférences avec la lumière diffusée, et qui crée le contraste de l'image.
Microscope à contraste interférentiel
Le contraste interférentiel (CI, IC pour les anglophones) est une technique qui permet de visualiser des objets transparents par une augmentation de leur contraste. C'est actuellement le CI selon Nomarski, inventé dans les années 1950 qui est le plus répandu. Cette technique apporte un plus important par rapport au contraste de phase en supprimant le phénomène de halo propre à ce dernier. Elle s'est imposée en microscopie dans de nombreux domaines actuellement.
Microscope confocal
Le microscope confocal génère une image d'une manière totalement différente de la microscopie normale en champ clair. La résolution est légèrement meilleure, mais le point le plus important est qu'il permet de former une image de coupes transversales sans être perturbé par la lumière hors du plan focal. Il donne donc une image très nette des objets en trois dimensions. Le microscope confocal est souvent utilisé en conjonction avec la microscopie à fluorescence.
Microscope à statif inversé
Microscope sans lentille
Le microscope sans lentille enregistre la figure de diffraction d'un laser par l'échantillon (principe de l'holographie), puis traite cette figure par ordinateur pour générer l'image.
Préparation des échantillons
L'échantillon observé doit remplir certaines conditions :
- de planéité, pour que l'objectif en donne une image entière nette, faute de quoi on ne peut en observer qu'une portion restreinte
- en transmission, il doit être de faible épaisseur pour que la lumière le traverse et ne rende visible que quelques éléments (cellules) dans le cas de la biologie ;
- en réflexion, la surface doit être en général polie afin que les rayures ne masquent pas ce que l'on veut observer ;
- les parties à observer doivent pouvoir se différencier :
- différenciation de couleurs par la coloration chimique de solutions standardisées, pour la biologie,
- attaque chimiques par des acides pour révéler des défauts en métallurgie,
- d'autres différenciations par l'éclairage en lumière polarisée, en ultra-violet (fluorescence), ou par principe interférentiel, révélant d'autres aspect, invisibles à l'œil nu.
En biologie, il est nécessaire, au préalable, de placer la coupe de tissu (ou le liquide contenant des organismes vivants) entre une lame et une lamelle (montage de la préparation microscopique entre lame et lamelle, avec ou sans coloration, avec ou sans dissection, montage in toto ou de coupes). L'objectif doit s'approcher de la lame pour la mise au point sans, par maladresse, détruire la préparation devenue très fragile.
Du fait de la préparation, la microscopie optique nécessite une importante quantité d'appareils complémentaires pour la seule destination de l'observation microscopique.
Prenons le cas de la biopsie en médecine et biologie (anatomopathologie) : le diagnostic par microscopie, de pièces biologiques prélévées par biopsie pendant une opération, impose des délais courts. Pour préparer la lame, on utilise un appareil appelé cryotome, une sorte de « trancheuse à jambon », placée dans un cryostat (congélateur), qui permet de découper des tranches très fines du corps qui sera à observer en le refroidissant rapidement, puis en le découpant à l'aide de la lame d'un rasoir spécial, affûté sur une autre machine à plaque de verre à l'aide de pâtes diamantées. Si l'on veut travailler à température ambiante, les délais sont plus longs et imposent des déshydratations et remplacement des eaux supprimées par de la paraffine (24 heures) pour que l'échantillon garde sa rigidité ; ensuite, il est coloré par plusieurs substances d'actions alternées de durée très longues, elles aussi.
Notes et références
- Athanasius Kircher, "Ars magna Lucis et Umbrae" [archive],1646
- Microscope simple de Leeuwenhoek [archive] sur le site du Musée des Confluences [archive].
- Stephen Jay Gould, The Lying stones of Marrakech, (les pierres truquées de Marrakech en français), 2000.
- Abramowitz M, Davidson MW, « Darkfield Illumination » [archive], (consulté le ).
- Abramowitz M, Davidson MW, « Rheinberg Illumination » [archive], (consulté le )
- Spring KR, Davidson MW ; Introduction to Fluorescence Microscopy [archive] ; Nikon Microscopy (consulté le 28/09/2008).
Voir aussi
Sur les autres projets Wikimedia :
Articles connexes
Liens externes
Microscopie électronique à balayage
Premier microscope électronique à balayage par M von Ardenne
Microscope électronique à balayage JEOL JSM-6340F
Principe de fonctionnement du Microscope Électronique à Balayage
La microscopie électronique à balayage (MEB) ou Scanning Electron Microscopy (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.
S'appuyant sur les travaux de Max Knoll et Manfred von Ardenne dans les années 1930, la MEB consiste en un faisceau d’électrons balayant la surface de l’échantillon à analyser qui, en réponse, réémet certaines particules. Ces particules sont analysées par différents détecteurs qui permettent de reconstruire une image en trois dimensions de la surface.
Les travaux menés dans les années 1960 dans le laboratoire de Charles Oatley à l’université de Cambridge ont grandement contribué au développement de la MEB, et ont conduit en 1965 à la commercialisation par Cambridge Instrument Co. des premiers microscopes à balayage1. Aujourd’hui, la microscopie électronique à balayage est utilisée dans des domaines allant de la biologie à la science des matériaux, et un grand nombre de constructeurs proposent des appareils de série équipés de détecteurs d’électrons secondaires et dont la résolution se situe entre 0,4 nanomètre2 et 20 nanomètres.
Principe général
Le pouvoir de résolution (capacité à distinguer des détails fins) de l’œil humain avec un microscope optique est limité par la longueur d’onde de la lumière visible (photons) ainsi que par la qualité des lentilles grossissantes. Les plus puissants microscopes optiques peuvent distinguer des détails de 0,1 à 0,2 µm3. Si l’on veut observer des détails plus fins, il faut diminuer la longueur d’onde qui éclaire les cibles. Dans le cas des microscopes électroniques, on n’utilise pas des photons, mais des électrons, dont les longueurs d’onde associées sont beaucoup plus faibles.
Schéma de principe « historique » de la microscopie à balayage. À partir des
années 1980, le
tube cathodique synchronisé avec le MEB a progressivement disparu pour céder la place à une acquisition numérique d’image.
La figure ci-contre illustre le schéma de principe d’un MEB : une sonde électronique fine (faisceau d’électrons) est projetée sur l’échantillon à analyser. L’interaction entre la sonde électronique et l’échantillon génère des électrons secondaires, de basse énergie qui sont accélérés vers un détecteur d’électrons secondaires qui amplifie le signal. À chaque point d’impact correspond un signal électrique. L’intensité de ce signal électrique dépend à la fois de la nature de l’échantillon au point d’impact qui détermine le rendement en électrons secondaires et de la topographie de l’échantillon au point considéré. Il est ainsi possible, en balayant le faisceau sur l’échantillon, d’obtenir une cartographie de la zone balayée.
La sonde électronique fine est produite par un « canon à électrons » qui joue le rôle d’une source réduite par des « lentilles électroniques » qui jouent le même rôle vis-à-vis du faisceau d’électrons que des lentilles conventionnelles, photoniques dans un microscope optique. Des bobines disposées selon les deux axes perpendiculaires à l’axe du faisceau et parcourues par des courants synchronisés permettent de soumettre la sonde à un balayage du même type que celui d'un écran cathodique. Les lentilles électroniques, qui sont généralement des lentilles magnétiques et les bobines de balayage forment un ensemble que l’on appelle la colonne électronique.
Schéma d’un MEB équipé d’un détecteur de rayons X « EDS » (à dispersion d’énergie)
Dans les MEB modernes, la cartographie d’électrons secondaires est enregistrée sous forme numérique, mais le MEB a pu être développé dès le début des années 1960, bien avant la diffusion des moyens de stockage informatique, grâce à un procédé analogique qui consistait, comme sur le schéma de la figure, à synchroniser le balayage du faisceau d’un tube cathodique avec celui du MEB, en modulant l’intensité du tube par le signal secondaire. L’image de l’échantillon apparaissait alors sur l’écran phosphorescent du tube cathodique et pouvait être enregistrée sur une pellicule photographique.
Un microscope électronique à balayage est essentiellement composé d’un canon à électrons et d’une colonne électronique, dont la fonction est de produire une sonde électronique fine sur l’échantillon, d’une platine porte-objet permettant de déplacer l’échantillon dans les trois directions et de détecteurs permettant de capter et d’analyser les rayonnements émis par l’échantillon. En outre l’appareil doit nécessairement être équipé d’un système de pompes à vide4.
Histoire
Travaux préliminaires
L’histoire de la microscopie à balayage découle en partie des travaux théoriques du physicien allemand Hans Busch sur la trajectoire des particules chargées dans les champs électromagnétiques. En 1926, il a démontré que de tels champs pouvaient être utilisés comme des lentilles électromagnétiques5 établissant ainsi les principes fondateurs de l’optique électronique géométrique. À la suite de cette découverte, l’idée d’un microscope électronique prit forme et deux équipes, celle de Max Knoll et Ernst Ruska de l’Université technique de Berlin et celle d’Ernst Brüche des laboratoires EAG envisagèrent de tester cette possibilité. Cette course a mené à la construction en 1932, par Knoll et Ruska, du premier microscope électronique en transmission6.
Premier microscope à balayage
Après avoir rejoint Telefunken pour mener des recherches sur les tubes cathodiques des téléviseurs, Max Knoll a développé, afin d’étudier la cible de tubes électroniques analyseurs, un analyseur à faisceau d’électrons qui réunissait toutes les caractéristiques d’un microscope électronique à balayage : l’échantillon se trouvait à l’extrémité d’un tube de verre scellé et un canon à électrons se trouvait à l’autre extrémité. Les électrons, accélérés sous une tension de l’ordre de 500 à 4 000 volts, étaient focalisés sur la surface et un système de bobines les déviait. Le faisceau balayait la surface de l’échantillon au rythme de 50 images par seconde. Le courant transmis par l’échantillon récupéré, amplifié et modulé et permettait de reconstruire une image. Le premier appareil utilisant ce principe a été construit en 19357.
Par la suite, c’est le scientifique allemand Manfred von Ardenne qui, en 1938, a construit le premier microscope électronique à balayage8. Mais cet appareil ne ressemblait pas encore aux MEB modernes car il avait été créé pour étudier des échantillons très fins en transmission. Il s’apparente donc plus à un microscope électronique en transmission à balayage (METB ou (en) STEM pour scanning transmission electron microscope). De plus, bien que doté d’un écran à tube cathodique, les images étaient enregistrées sur des films photographiques disposés sur un tambour rotatif. Von Ardenne a ajouté des bobines de balayage à un microscope électronique en transmission. Le faisceau d’électrons, d’un diamètre de 0,01 µm, balayait la surface de l’échantillon et les électrons transmis étaient récupérés sur le film photographique qui était déplacé au même rythme que le faisceau. La première micrographie obtenue par un MEBT fut l’image d’un cristal de ZnO grossi 8 000 fois avec une résolution latérale de 50 à 100 nanomètres. L’image était composée de 400 par 400 lignes et il a fallu 20 minutes pour l’obtenir. Le microscope disposait de deux lentilles électrostatiques entourant les bobines de balayage.
En 1942, le physicien et ingénieur russe Vladimir Zworykin, qui travaillait dans les laboratoires de la Radio Corporation of America à Princeton aux États-Unis, a publié les détails du premier microscope électronique à balayage pouvant analyser une surface opaque et pas seulement analyser un échantillon fin en transmission. Un canon à électrons à filament de tungstène émettait des électrons qui étaient accélérés sous une tension de 10 000 volts. L’optique électronique de l’appareil était composée de trois bobines électrostatiques, les bobines de balayage étant placées entre la première et la seconde lentille. Ce système donnait une image très réduite de la source de l’ordre de 0,01 µm. Fait assez courant au début de l’histoire des MEB, le canon à électrons se situait en bas du microscope pour que la chambre d’analyse puisse se trouver à la bonne hauteur pour le manipulateur. Mais ceci avait une fâcheuse conséquence car l’échantillon risquait ainsi de tomber dans la colonne du microscope. Ce premier MEB atteignait une résolution de l’ordre de 50 nm. Mais à cette époque, le microscope électronique en transmission se développait assez rapidement et en comparaison des performances de ce dernier, le MEB suscitait beaucoup moins de passion et son développement fut donc ralenti9.
Développement du microscope électronique à balayage
Microscope électronique à balayage
À la fin des années 1940, Charles Oatley, alors maître de conférence du département d’ingénierie de l’université de Cambridge au Royaume-Uni s’intéressa au domaine de l’optique électronique et décida de lancer un programme de recherche sur le microscope électronique à balayage, en complément des travaux effectués sur le microscope électronique à transmission par Ellis Cosslett, également à Cambridge dans le département de physique. Un des étudiants de Charles Oatley, Ken Sander, commença à travailler sur une colonne pour MEB en utilisant des lentilles électrostatiques mais il dut s’interrompre un an après en raison de la maladie. C’est Dennis McMullan qui reprit ces travaux en 1948. Charles Oatley et lui-même construisirent leur premier MEB (appelé SEM1 pour Scanning Electron Microscope 1) et en 1952, cet instrument avait atteint une résolution de 50 nm mais ce qui était le plus important était qu’il rendait enfin ce stupéfiant effet de relief, caractéristique des MEB modernes10.
En 1960, l’invention d’un nouveau détecteur par Thomas Eugene Everhart et R.F.M. Thornley va accélérer le développement du microscope électronique à balayage : détecteur Everhart-Thornley. Extrêmement efficace pour collecter les électrons secondaires ainsi que les électrons rétrodiffusés, ce détecteur va devenir très populaire et se retrouver sur presque chaque MEB.
Interaction électron-matière
Interaction entre la matière et les électrons
En microscopie optique classique, la lumière visible réagit avec l’échantillon et les photons réfléchis sont analysés par des détecteurs ou par l’œil humain. En microscopie électronique, le faisceau lumineux est remplacé par un faisceau d’électrons primaires qui vient frapper la surface de l’échantillon et les photons réémis sont remplacés par tout un spectre de particules ou rayonnements : électrons secondaires, électrons rétrodiffusés, électrons Auger ou rayons X. Ces différentes particules ou rayonnements apportent différents types d’informations sur la matière dont est constitué l’échantillon11.
Électrons secondaires
Lors d’un choc entre les électrons primaires du faisceau et les atomes de l’échantillon, un électron primaire peut céder une partie de son énergie à un électron peu lié de la bande de conduction de l’atome, provoquant ainsi une ionisation par éjection de ce dernier. On appelle électron secondaire cet électron éjecté. Ces électrons possèdent généralement une faible énergie (environ 50 eV). Chaque électron primaire peut créer un ou plusieurs électrons secondaires.
De par cette faible énergie, les électrons secondaires sont émis dans les couches superficielles proches de la surface. Les électrons qui peuvent être recueillis par les détecteurs sont souvent émis à une profondeur inférieure à 10 nanomètres. Grâce à cette faible énergie cinétique, il est assez facile de les dévier avec une faible différence de potentiel. On peut ainsi facilement collecter un grand nombre de ces électrons et obtenir des images de bonne qualité avec un bon rapport signal/bruit et une résolution de l’ordre de 40 Å (ångström) pour un faisceau de 30 Å de diamètre.
Étant donné qu’ils proviennent des couches superficielles, les électrons secondaires sont très sensibles aux variations de la surface de l’échantillon. La moindre variation va modifier la quantité d’électrons collectés. Ces électrons permettent donc d’obtenir des renseignements sur la topographie de l’échantillon. En revanche, ils donnent peu d’information sur le contraste de phase (cf électrons rétrodiffusés)12.
Électrons rétrodiffusés
Les électrons rétrodiffusés ((en) back-scattered electrons) sont des électrons résultant de l’interaction des électrons du faisceau primaire avec des noyaux d’atomes de l’échantillon et qui ont réagi de façon quasi élastique avec les atomes de l’échantillon. Les électrons sont réémis dans une direction proche de leur direction d’origine avec une faible perte d’énergie.
Ces électrons récupérés ont donc une énergie relativement élevée, allant jusqu’à 30 keV, énergie beaucoup plus importante que celle des électrons secondaires. Ils peuvent être émis à une plus grande profondeur dans l’échantillon. La résolution atteinte avec les électrons rétrodiffusés sera donc relativement faible, de l’ordre du micromètre ou du dixième de micromètre.
De plus, ces électrons sont sensibles au numéro atomique des atomes constituant l’échantillon. Les atomes les plus lourds (ceux ayant un nombre important de protons) réémettront plus d’électrons que les atomes plus légers. Cette particularité sera utilisée pour l’analyse en électrons rétrodiffusés. Les zones formées d’atomes avec un nombre atomique élevé apparaîtront plus brillante que d’autres, c’est le contraste de phase. Cette méthode permettra de mesurer l’homogénéité chimique d’un échantillon et permettra une analyse qualitative13.
Électrons Auger
Lorsqu’un atome est bombardé par un électron primaire, un électron d’une couche profonde peut être éjecté et l’atome entre dans un état excité. La désexcitation peut se produire de deux façons différentes : en émettant un photon X (transition radiative ou fluorescence X) ou en émettant un électron Auger (effet Auger). Lors de la désexcitation, un électron d’une couche supérieure vient combler la lacune créée par l’électron initialement éjecté. Durant cette transition, l’électron périphérique perd une certaine quantité d’énergie qui peut être émise sous forme de photon X ou peut alors être transmise à un électron d’une orbite plus externe et donc moins énergétique. Cet électron périphérique se retrouve à son tour éjecté et peut être récupéré par un détecteur.
Les électrons Auger possèdent une très faible énergie et sont caractéristiques de l’atome qui les a émis. Ils permettent ainsi d’obtenir des informations sur la composition de l’échantillon et plus particulièrement de la surface de l’échantillon ainsi que sur le type de liaison chimique, dans la mesure évidemment où le MEB est équipé d’un détecteur d’électrons réalisant une discrimination en énergie. Ce sont des MEB spécialisés qui sont équipés d’analyseurs en énergie. On parle alors d’« analyse Auger » ou de « spectrométrie Auger ». Le niveau de vide des microscopes électroniques Auger doit être bien meilleur que pour les MEB ordinaires, de l’ordre de 10-10 Torr14.
Rayon X
L’impact d’un électron primaire à haute énergie peut ioniser un atome à une couche interne. La désexcitation, le remplissage de l’ordre énergétique de la structure électronique, se produit avec émission de rayons X. L’analyse de ces rayons permet d’obtenir des informations sur la nature chimique de l’atome15.
Instrumentation
Canon à électrons
Le canon à électrons est un des composants essentiels d’un microscope électronique à balayage. C’est en effet la source du faisceau d’électrons qui viendra balayer la surface de l’échantillon. La qualité des images et la précision analytique que l’on peut obtenir avec un MEB requièrent que la tache électronique sur l’échantillon soit à la fois fine, intense et stable. Une forte intensité dans une tache la plus petite possible nécessite une source « brillante ». L’intensité ne sera stable que si l’émission de la source l’est également.
Le principe du canon à électrons est d’extraire les électrons d’un matériau conducteur (qui en est une réserve quasiment inépuisable) vers le vide où ils sont accélérés par un champ électrique. Le faisceau d’électrons ainsi obtenu est traité par la colonne électronique qui en fait une sonde fine balayée sur l’échantillon.
Il existe deux familles de canon à électrons selon le principe utilisé pour extraire les électrons :
Il existe également un principe intermédiaire : la source Schottky à émission de champ, de plus en plus employée.
Suivant ces distinctions et le mode de fonctionnement, les canons à électrons ont des propriétés et des caractéristiques différents. Il existe des grandeurs physiques pour les caractériser. La principale est la brillance mais la durée de vie est également très importante, ainsi que la stabilité. Le courant maximum disponible peut également être pris en considération, ainsi que la dispersion énergétique16.
Brillance d’une source
On peut définir la brillance B d’une source par le rapport du courant émis par la source au produit de la surface de la source par l’angle solide. Dans le cas général, on ne sait mesurer que la surface d’une « source virtuelle » qui est la zone d’où semblent provenir les électrons. (Définition à revoir)
- B = c o u r a n t e ´ m i s ( s u r f a c e d e l a s o u r c e ) × ( a n g l e s o l i d e )
Pour une source d’électrons dont les caractéristiques sont :
- le diamètre de la source virtuelle d ;
- le courant émis Ie ;
- le demi-angle d’ouverture α.
l’expression de la brillance devient :
- B = I e ( π ( d 2 ) 2 ) ( π α 2 )
Dans les systèmes optiques, la brillance, qui se mesure en A.m-2.sr-1 (ampères par unité de surface et par angle solide), a la propriété de se conserver lorsque l’énergie d’accélération est constante. Si l’énergie varie, la brillance lui est proportionnelle. Pour obtenir un signal de détection abondant lorsque la tache électronique sur l’échantillon est très petite, il faut que la brillance de la source soit la plus élevée possible. Dans la littérature, on trouve très souvent la brillance exprimée en A⋅cm-2.sr-117.
Émission thermoïonique : Filament de tungstène et pointes LaB6
Des matériaux tels que le tungstène et l’hexaborure de lanthane (LaB6) sont utilisés en raison de leur faible travail de sortie, c’est-à-dire de l’énergie nécessaire pour extraire un électron de la cathode. En pratique, cette énergie est apportée sous forme d’énergie thermique en chauffant la cathode à une température suffisamment élevée pour qu’une certaine quantité d’électrons acquière l’énergie suffisante pour franchir la barrière de potentiel qui les maintient dans le solide. Les électrons qui ont franchi cette barrière de potentiel se retrouvent dans le vide où ils sont ensuite accélérés par un champ électrique.
Dans la pratique, on peut utiliser un filament de tungstène, formé comme une épingle à cheveux, que l’on chauffe par effet Joule, comme dans une ampoule électrique. Le filament est ainsi porté à une température supérieure à 2 200 °C, typiquement 2 700 °C.
Les cathodes au LaB6 doivent être chauffées à une température moins élevée mais la technologie de fabrication de la cathode est un peu plus compliquée car le LaB6 ne peut pas être formé en filament. En fait, on accroche une pointe de monocristal de LaB6 à un filament en carbone. Le cristal d’hexaborure de lanthane est porté aux alentours de 1 500 °C pour permettre l’émission d’électrons. Cette cathode nécessite un vide plus poussé que pour un filament de tungstène (de l’ordre de 10-6 à 10−7 torr contre 10-5). Les cathodes en hexaborure de cérium (CeB6) ont des propriétés très voisines.
Le filament de tungstène porté à une température de 2 700 °C a une brillance typique de 105 A (cm−2 sr−1) pour une tension d’accélération de 20 kilovolts18. Il a, à cette température, une durée de vie entre 40 et 100 heures. Le diamètre de la source virtuelle est de l’ordre de 40 µm.
La cathode LaB6 portée à une température de 1 500 °C a une brillance typique de 106 A cm−2 sr−1 pour une durée de vie entre 500 et 1 000 heures. Le diamètre de la source virtuelle est de l’ordre de 15 µm19.
Canons à émission de champ
Le principe d’un canon à émission de champ est d’utiliser une cathode métallique en forme de pointe très fine et d’appliquer une tension de l’ordre de 2 000 à 7 000 volts entre la pointe et l’anode. On produit ainsi, par « effet de pointe », un champ électrique très intense, de l’ordre de 107 V cm−1, à l’extrémité de la cathode. Les électrons sont alors extraits de la pointe par effet tunnel. Il existe deux types de canons à émission de champ (FEG en anglais pour Field Emission Gun) :
- l’émission de champ à froid (CFE en anglais). La pointe reste à température ambiante
- l’émission de champ assistée thermiquement (TFE en anglais). La pointe est alors portée à une température typique de 1 800 K
Le gros avantage des canons à émission de champ est une brillance théorique qui peut être cent fois plus importante que celle des cathodes LaB6. Le deuxième type de canon (assisté thermiquement) est de plus en plus utilisé, car il permet pour un sacrifice en brillance très modeste de mieux maîtriser la stabilité de l’émission. Le courant disponible est également plus élevé. Avec un canon à émission de champ froid, le courant disponible sur l’échantillon n’est en effet jamais supérieur à 1 nA, alors qu’avec l’assistance thermique, il peut approcher les 100 nA20.
Une autre grosse différence entre les canons à émission de champ et les canons thermoïoniques est que la source virtuelle est beaucoup plus petite. Cela provient du fait que toutes les trajectoires sont normales à la surface de la pointe, qui est une sphère d’environ 1 µm. Les trajectoires semblent ainsi provenir d’un point. C’est ainsi que l’on obtient des brillances très élevées : 108 A cm−2 sr−1 pour les cathodes froides et 107 A cm−2 sr−1 pour les cathodes à émission de champ chauffées. Sur l’échantillon, la brillance est toujours dégradée19.
Le très petit diamètre de la source virtuelle nécessite moins d’étages de réduction, mais un inconvénient est que la source, moins réduite est plus sensible aux vibrations.
Comparaison des différentes propriétés des canons à électrons, à 20 kV21
| Émission thermoïonique | Émission de champ |
Matériaux | Tungstène | LaB6 | S-FEG | C-FEG |
Brillance (A⋅cm-2⋅sr-1) |
105 |
106 |
107 |
108 |
Température (°C) |
1 700–2 400 |
1 500 |
1 500 |
ambiante |
Diamètre de la pointe (nm) |
50 000 |
10 000 |
100–200 |
20–30 |
Taille de la source (Nanomètre) |
30 000–100 000 |
5 000–50 000 |
15–30 |
< 5 |
Courant d’émission (µA) |
100–200 |
50 |
50 |
10 |
Durée de vie (heure) |
40–100 |
200–1 000 |
> 1 000 |
> 1 000 |
Vide minimal (Pa) |
10-2 |
10-4 |
10-6 |
10-8 |
Stabilité à court terme (%RMS) |
<1 |
<1 |
<1 |
4–6 |
Colonne électronique
Colonnes pour canon à émission thermoïoniques
La fonction de la colonne électronique est de produire à la surface de l’échantillon une image de la source virtuelle suffisamment réduite pour que la tache électronique (le spot) obtenue soit assez fine pour analyser l’échantillon avec la résolution requise, dans la gamme des 0,5 à 20 nm. La colonne doit également contenir des moyens pour balayer le faisceau.
Comme les sources des canons à émission thermoïonique ont un diamètre typique de 20 µm, la réduction de la colonne électronique doit être d’au moins 20 000, produite par trois étages comportant chacun une lentille magnétique (Voir figure ci-dessus).
La colonne électronique doit également comporter un diaphragme de limitation d’ouverture, car les lentilles magnétiques ne doivent être utilisées que dans leur partie centrale pour avoir des aberrations plus petites que la résolution recherchée. L’astigmatisme résultant, par exemple de défaut de sphéricité des lentilles peut être compensé par un « stigmateur », mais l’aberration sphérique et l’aberration chromatique ne peuvent être corrigées.
Le balayage de la tache électronique sur l’échantillon résulte de champs magnétiques selon les deux directions transverses, X et Y, produits par des bobines de déflexion qui sont parcourues par des courants électriques. Ces bobines de déflexion sont situées juste avant la dernière lentille19.
Colonnes pour canon à émission de champ
Colonne Gemini de Zeiss. Cette colonne, équipée d’une source à émission de champ, dédiée aux applications basse énergie, contient un détecteur d’électrons secondaire dans la colonne.
Les colonnes électroniques montées avec des canons à émission de champ peuvent avoir une réduction de la source bien inférieure à celle des colonnes conventionnelles19.
La colonne Gemini représentée sur la figure ci-contre comporte deux lentilles magnétiques, mais cette paire de lentille, montées en doublet, ne constitue en fait qu’un seul étage de réduction. La structure en doublet permet d’éviter de limiter le nombre de cross-over, c’est-à-dire, d’images intermédiaires de la source, comme sur les colonnes conventionnelles, car ces cross-over sont générateurs de dispersion en énergie et donc d’aberration chromatique.
La forte brillance des sources à émission de champ les rend particulièrement propices aux applications à basse énergie d’impact, c’est-à-dire inférieure à 6 keV. car la brillance étant proportionnelle à l’énergie d’accélération, l’obtention d’un courant électronique primaire confortable ne saurait tolérer le cumul de deux handicaps, celui d’une source médiocre et d’une faible énergie d’accélération.
Plusieurs raisons peuvent pousser à rechercher les faibles énergies d’impact :
- lorsque l’image résulte d’un mode de détection qui met en cause l’ensemble de la poire de pénétration des électrons dans la matière, comme c’est le cas, par exemple, pour l’utilisation en microanalyse par rayons X : plus l’énergie d’impact est élevée, et plus la poire est évasée ;
- pour l’analyse dans les isolants dans le cas où une métallisation superficielle de l’échantillon introduirait un artefact de mesure.
Il existe un niveau d’énergie, situé aux environs de 1 500 eV dans le cas de la silice, pour lequel il y a autant d’électrons secondaires émis que d’électrons primaires incidents.
Pour travailler à basse énergie, par exemple à 1 500 eV ou à quelques centaines d’eV, il est intéressant de véhiculer les électrons à énergie plus importante dans la colonne, et de les ralentir juste avant l’échantillon. L’espace de ralentissement forme alors une lentille électrostatique, c’est ce qui est représenté sur la figure de ce paragraphe. Lorsque les électrons restent à énergie constante, les lentilles magnétiques ont des aberrations plus faibles que les lentilles électrostatiques, mais il se trouve que les lentilles comprenant une zone de ralentissement, nécessairement électrostatique, ont toutes les aberrations relatives à l’ouverture du faisceau considérablement réduite22.
Lorsque l’énergie d’impact est faible, et qu’il y a un champ électrique de ralentissement proche de l’échantillon, la mise en place du détecteur d’électrons secondaires dans l’espace entre la dernière lentille et l’échantillon pose de plus en plus de problèmes. Une solution consiste alors à disposer le détecteur à l’intérieur de la colonne. En effet, le champ électrique qui ralentit les électrons primaires, accélère les électrons secondaires. En anglais, ce type d’arrangement est connu sous le nom d’in-lens detector ou Through-The-Lens detector (détecteur TTL). En français, on pourrait dire « détecteur dans la colonne ».
Détecteur d’électrons secondaires
Le détecteur d’électrons secondaires ou détecteur Everhart-Thornley a été développé dans le but d’améliorer le système de collection utilisé à l’origine par Vladimir Zworykin et qui était constitué d’un écran phosphorescent/photomultiplicateur. En 1960, deux étudiants de Charles Oatley, Thomas Eugene Everhart et R.F.M. Thornley, ont eu l’idée d’ajouter un guide de lumière entre cet écran phosphorescent et ce photomultiplicateur. Ce guide permettait un couplage entre le scintillateur et le photomultiplicateur, ce qui améliorait grandement les performances. Inventé il y a plus d’un demi-siècle, ce détecteur est aujourd’hui celui le plus fréquemment utilisé.
Un détecteur Everhart-Thornley est composé d’un scintillateur qui émet des photons sous l’impact d’électrons à haute énergie. Ces photons sont collectés par un guide de lumière et transportés vers un photomultiplicateur pour la détection. Le scintillateur est porté à une tension de plusieurs kilovolts afin de communiquer de l’énergie aux électrons secondaires détectés - il s’agit en fait d’un procédé d’amplification. Pour que ce potentiel ne perturbe pas les électrons incidents, il est nécessaire de disposer une grille, sorte de cage de Faraday, pour blinder le scintillateur. Dans le fonctionnement normal, la grille est polarisée à quelque + 200 volts par rapport à l’échantillon de façon à créer à la surface de l’échantillon un champ électrique suffisant pour drainer les électrons secondaires, mais assez faible pour ne pas créer d’aberrations sur le faisceau incident.
La polarisation du scintillateur à une tension élevée et le fort champ électrique qui en résulte est incompatible avec un MEB à faible vide : Il se produirait alors une ionisation de l’atmosphère de la chambre d’observation consécutive à l’effet Paschen.
Détecteur Everhart-Thornley avec une tension positive
Détecteur Everhart-Thornley avec une tension négative
Polarisée à 250 volts par rapport à l’échantillon (voir schéma de gauche), la grille attire une grande partie des électrons secondaires émis par l’échantillon sous l’impact du faisceau d’électrons primaire. C’est parce que le champ électrique généré par la cage de Faraday est fortement dissymétrique qu’on peut obtenir un effet de relief.
Lorsque la grille est polarisée négativement, typiquement à - 50 volts (voir schéma de droite), le détecteur repousse l’essentiel des électrons secondaires dont l’énergie initiale est souvent inférieure à 10 eV. Le détecteur Everhart-Thornley devient alors un détecteur d’électrons rétrodiffusés23.
Préparation de l’échantillon
La qualité des images obtenues en microscopie électronique à balayage dépend grandement de la qualité de l’échantillon analysé. Idéalement, celui-ci doit être absolument propre, si possible plat et doit conduire l’électricité afin de pouvoir évacuer les électrons. Il doit également être de dimensions relativement modestes, de l’ordre de 1 à 2 centimètres. Toutes ces conditions imposent donc un travail préalable de découpe et de polissage. Les échantillons isolants (échantillons biologiques, polymères, etc.) doivent en plus être métallisés, c’est-à-dire recouverts d’une fine couche de carbone ou d’or. Cependant cette couche métallique, du fait de son épaisseur, va empêcher la détection de détails très petits. On peut donc utiliser un faisceau d'électrons de plus basse énergie qui évitera de charger l'échantillon (et donc de perdre de la visibilité), la couche métallique ne sera alors plus nécessaire.
Des répliques synthétiques peuvent être réalisées pour éviter l'utilisation d'échantillons originaux lorsqu'ils ne sont pas adaptés ou disponibles pour l'examen au MEB en raison d'obstacles méthodologiques ou de problèmes juridiques. Cette technique est réalisée en deux étapes : (1) un moule de la surface d'origine est fabriqué en utilisant un élastomère dentaire à base de silicone, et (2) une réplique de la surface d'origine est obtenue en versant une résine synthétique dans le moule24.
Échantillons métalliques
Les échantillons métalliques nécessitent peu de préparation à l'exception du nettoyage et du montage[Information douteuse].
Échantillons biologiques
Par nature, les échantillons biologiques contiennent de l’eau et sont plus ou moins mous. Ils nécessitent donc une préparation plus attentive qui vise à les déshydrater sans en détruire la paroi des cellules. De plus, comme tous les échantillons destinés à être observés dans un MEB, ceux-ci doivent être conducteurs. Pour cela, ils doivent donc subir une préparation spécifique en plusieurs étapes.
La première étape est une étape de fixation qui vise à tuer les cellules tout en s’efforçant d’en conserver les structures pour que l’on puisse observer l’échantillon dans un état aussi proche que possible de l’état vivant. La seconde étape consiste à extraire de l’échantillon les éléments destinés à l’observation. Il n’est pas rare de ne s’intéresser qu’à un organe ou à un élément précis du spécimen, par exemple, la surface d’un œil, un élytre, une écaille ou un poil d’un insecte. Il faut donc souvent isoler cette partie avant de la préparer pour l’observation. Il existe plusieurs techniques pour extraire ces parties. La plus simple étant une dissection manuelle ou la dissolution des parties molles et des chairs.
Une condition nécessaire à tous les échantillons mais plus particulièrement les échantillons biologiques est la propreté. La surface de l’échantillon biologique à étudier doit contenir le moins d’impuretés possible, pour permettre une netteté parfaite même avec des agrandissements importants. Pour cela, il existe trois principales techniques : le nettoyage manuel, mécanique ou chimique.
Les échantillons doivent être absolument secs et ne comporter aucune trace d’eau. En effet, la pression dans la chambre d’observation est très faible et les molécules d’eau contenues dans l’échantillon risqueraient de détruire les cellules en s’évaporant ou de polluer la chambre d’observation. Il existe également différentes méthodes pour y parvenir suivant la nature de l’échantillon biologique : séchage à l’air, par contournement du point critique ou par déshydratation chimique.
Une fois nettoyé, séché, rendu conducteur, l’échantillon est prêt à être monté sur le porte-objet est placé dans la chambre d’observation.
Différents types d’imageries
Un microscope électronique à balayage peut avoir plusieurs modes de fonctionnement suivant les particules analysées.
Imagerie en électrons secondaires
Détecteur(GSE) d’électrons secondaires
Dans le mode le plus courant, un détecteur d’électrons transcrit le flux d’électrons en une luminosité sur un écran de type télévision. En balayant la surface, on relève les variations de contraste qui donnent une image de la surface avec un effet de relief. La couleur (noir et blanc) sur la micrographie obtenue est une reconstruction par un système électronique et n’a rien à voir avec la couleur de l’objet.
La détection des électrons secondaires est le mode classique d’observation de la morphologie de la surface. Les électrons secondaires captés proviennent d’un volume étroit (environ 10 nm). De fait, la zone de réémission fait à peu près le même diamètre que le faisceau. La résolution du microscope est donc le diamètre du faisceau, soit environ 10 nm. Une grille placée devant le détecteur d’électrons, polarisée positivement (200-400 V), attire les électrons. De cette manière, la majorité des électrons secondaires sont détectés alors que les électrons rétrodiffusés, qui ont une énergie plus élevée, ne sont quasiment pas déviés par le champ électrique produit par la grille du collecteur. La quantité d’électrons secondaires produite ne dépend pas de la nature chimique de l’échantillon, mais de l’angle d’incidence du faisceau primaire avec la surface : plus l’incidence est rasante, plus le volume excité est grand, donc plus la production d’électrons secondaires est importante, d’où un effet de contraste topographique (une pente apparaît plus « lumineuse » qu’un plat). Cet effet est renforcé par le fait que le détecteur est situé sur le côté ; les électrons provenant des faces situées « dos » au détecteur sont réfléchis par la surface et arrivent donc en plus petite quantité au détecteur, créant un effet d’ombre25.
Imagerie en électrons rétrodiffusés
Détecteur(BSE) d’électrons rétrodiffusés
Les électrons rétrodiffusés proviennent d’un volume plus important ; le volume d’émission fait donc plusieurs fois la taille du faisceau. La résolution spatiale du microscope en électrons rétrodiffusés est d’environ 100 nm. Les électrons rétrodiffusés traversent une épaisseur importante de matière avant de ressortir (de l’ordre de 450 nm). La quantité d’électrons capturés par les atomes rencontrés et donc la quantité d’électrons rétrodiffusés qui ressortent dépend de la nature chimique des couches traversées. Le taux d’émission électronique augmente avec le numéro atomique. On obtient donc un contraste chimique, les zones contenant des atomes légers (Z faible) apparaissant en plus sombre.
Le contraste topographique obtenu dépendra essentiellement du type de détecteur et de sa position. Dans le cas d'un détecteur annulaire placé dans l'axe du faisceau primaire, au-dessus de l'échantillon, les électrons rétrodiffusés seront redirigés vers le haut de la colonne : le taux d’émission dépend peu du relief, l’image apparaît donc « plate »26.
Dans le cas d'un détecteur en position latérale (Everhart-Thornley polarisé négativement), les électrons rétrodiffusés émis par les faces "cachées" illuminées par le faisceau ne peuvent atteindre le détecteur, en raison de l'absence de déviation opérée par ce dernier sur ces électrons ayant une grande énergie cinétique : il en résulte une image avec des ombres portées très marquées.
Imagerie en diffraction d’électrons rétrodiffusés
- Pour des articles détaillés, voir Diffraction d’électrons rétrodiffusés et Théorie de la diffraction sur un cristal
Comme toute particule élémentaire, les électrons ont un comportement corpusculaire et ondulatoire. Ce mode d’imagerie en diffraction d’électrons rétrodiffusés (plus connu sous le nom de EBSD pour Electron BackScatter Diffraction en anglais) utilise la propriété ondulatoire des électrons et leur capacité à diffracter sur un réseau cristallographique. Elle est particulièrement efficace pour caractériser la microstructure des matériaux polycristallins. Elle permet de déterminer l’orientation des différents grains dans un matériau polycristallin et l’identification des phases d’une cristallite dont la composition a préalablement été faite par spectrométrie X.
Couplé à un capteur CCD, le détecteur EBSD est composé d’un écran phosphorescent qui se trouve directement dans la chambre d’analyse du microscope. L’échantillon est incliné en direction du détecteur et l’angle par rapport au faisceau d’électrons primaires est de l’ordre de 70°. Lorsque les électrons viennent frapper la surface de l’échantillon, ils la pénètrent sur une certaine profondeur et sont diffractés par les plans cristallographiques selon un angle θ B dont la valeur est donnée par la loi de Bragg :
Cliché de diffraction obtenu par EBSD
- 2 d h k l sin θ B = n ⋅ λ .
d h k l représente la distance interréticulaire, λ la longueur d’onde et le nombre entier n l’ordre de diffraction.
La diffraction se fait sur 360° et chaque plan diffractant crée un « cône de diffraction » dont le sommet se situe au point d’impact du faisceau d’électrons primaires. Il existe donc autant de cônes de diffraction que de plans diffractants. L’espacement entre ces différents cônes est, par l’intermédiaire de la loi de Bragg, relié à la distance entre les plans cristallins.
L’inclinaison de l’échantillon et la position de l’écran phosphorescent sont telles que ces cônes viennent frapper l’écran. Les électrons font scintiller l’écran phosphorescent et peuvent être détectés par la caméra CCD. Sur l’écran, ces portions de cônes tronqués apparaissent sous la forme de lignes. Le cliché de diffraction que l’on obtient est une superposition de bandes sombres alternées avec des bandes de plus forte intensité que l’on appelle lignes de Kikuchi. Ces lignes, leurs divers points d’intersection et leurs espacements, peuvent être, en connaissant la distance de l’écran à l’échantillon, convertis en angles et l’on peut ainsi déterminer les paramètres de maille.
Avec cette méthode et du fait de la grande inclinaison de l’échantillon, la résolution spatiale est très asymétrique : de l’ordre de 1 µm latéralement mais de l’ordre de 50 à 70 µm longitudinalement27.
Imagerie en courant d’échantillon
Principe du courant d’échantillon
Le principe de l’imagerie en courant d’échantillon (en anglais EBIC pour Electron Beam Induced Current ou Courant Induit par un Faisceau Électronique) est différent des précédents modes de fonctionnement car il n’est pas basé sur une analyse des particules éventuellement réémises par la matière mais sur une mesure du courant transmis par l’échantillon. Lorsqu’un échantillon est bombardé par un certain flux d’électrons incidents, environ 50 % de ces éléments sont réémis sous forme d’électrons rétrodiffusés et 10 % sous forme d’électrons secondaires. Le reste du flux d’électrons se propage à travers l’échantillon jusqu’à la terre. En isolant l’échantillon on peut canaliser ce courant et en l’amplifiant, on peut l’utiliser pour créer une image de la structure de l’échantillon : c’est le principe de l’imagerie en courant d’échantillon.
Le courant induit au sein de l’échantillon est particulièrement sensible à un éventuel champ électrique. La technique par courant d’échantillon est principalement utilisée pour représenter des régions où le potentiel électrique varie. La différence de dopage au sein d’une jonction p-n entre la zone dopée n et la zone dopée p induit une polarisation. Cette technique est particulièrement utilisée pour étudier les jonctions p-n des semi-conducteurs où la conductivité électrique varie en fonction du dopage. Lorsque le faisceau d’électrons se situe sur la zone dopée n, le courant transmis est faible alors que lorsqu’il se trouve sur la zone dopée p, les électrons se propagent plus facilement et la zone apparaît en plus clair.
En dehors de cet exemple des jonctions p-n, l’imagerie en courant d’électrons est particulièrement adaptée pour repérer des défauts (par exemple un défaut ponctuel) d’un réseau cristallin qui apparaissent alors sous la forme de points ou de lignes noirs, une hétérogénéité de dopage28.
Imagerie chimique élémentaire par spectrométrie de rayons X
L’énergie des rayons X émis lors de la désexcitation des atomes dépend de leur nature chimique (ce sont les raies caractéristiques). En analysant le spectre des rayons X, on peut avoir une analyse élémentaire, c’est-à-dire savoir quels types d’atomes sont présents. Le faisceau balayant l’écran, on peut même dresser une cartographie chimique, avec toutefois une résolution très inférieure à l’image en électrons secondaires (de l’ordre de 3 μm).
L’analyse peut se faire par dispersion de longueur d’onde (WDS, wavelength dispersive spectroscopy), c’est le principe de la microsonde de Castaing inventée en 1951 par Raimond Castaing, ou par sélection d’énergie (EDS, energy dispersive spectroscopy). La technique utilisant les longueurs d’onde est plus précise et permet des analyses quantitatives alors que celle utilisant l’énergie est plus rapide et moins coûteuse.
En dispersion d’énergie la détection des photons X est réalisée par un détecteur constitué d’une diode de cristal de silicium dopé en lithium en surface ou d'un cristal de germanium.
Ce cristal est maintenu à la température de l’azote liquide pour minimiser le bruit électronique, et ainsi améliorer la résolution en énergie et donc la résolution spectrale. Le détecteur est protégé par une fenêtre en béryllium pour éviter son givrage lors d’un contact avec l’air ambiant29.
Mesure sous vide partiel, microscope environnemental (ESEM)
Si un échantillon est peu conducteur (par exemple le verre ou les plastiques), des électrons s’accumulent sur la surface et ne sont pas évacués ; cela provoque une surbrillance qui gêne l’observation. On dit alors que l’échantillon charge. Il peut être alors intéressant de fonctionner avec un vide partiel, c’est-à-dire une pression de quelques Pa à quelques milliers de Pa30 (contre 10-3 à 10−4 Pa en conditions habituelles), avec une intensité de faisceau moins forte. Les électrons accumulés sur l’échantillon sont neutralisés par les charges positives de gaz (azote principalement) engendrés par le faisceau incident. L’observation est alors possible par le détecteur d’électrons rétrodiffusés qui reste fonctionnel dans ce mode de pression contrôlée, contrairement au détecteur d'électrons secondaires du type Everheart-Thornley. Le signal provenant des électrons secondaires est formé grâce à des procédés propres à chaque constructeur de microscope31.
L’analyse X dans ce mode reste possible.
Depuis les années 1980, le microscope environnemental connu aussi par l'acronyme ESEM (environmental scanning electron microscope) est caractérisé par un vide de la chambre objet de plusieurs kiloPascals, ce qui permet l'observation d'échantillons hydratés où l'eau est maintenue en phase liquide au-dessus de 0 °C32.
MEB et Couleur
Les MEB ne produisent pas naturellement des images en couleur, car chaque pixel d'une image représente un nombre d'électrons reçu par un détecteur durant le laps de temps où le faisceau d'électrons est envoyé à la position que ce pixel représente. Ce nombre unique est traduit pour chaque pixel, par un niveau de gris, ce qui forme une image "noir et blanc"33 Cependant, plusieurs méthodes sont utilisées pour obtenir des images en couleur qui favorisent la vision et l'interprétation humaines.
Fausse couleur obtenue avec un seul détecteur
- Pour les images de composition obtenues sur des surfaces plates (typiquement, image en électrons rétrodiffusés ou "BSE") :
La façon la plus simple d'obtenir de la couleur est d'associer à ce nombre unique codant chaque pixel une couleur arbitraire au moyen d'une palette de fausse couleur (chaque niveau de gris est ainsi remplacé par une couleur choisie, plus facile à discerner). Sur une image BSE, une fausse couleur peut ainsi constituer une aide précieuse pour aider à différencier les phases présentes dans un matériau.
- Sur les images de texture de surface:
Un échantillon observé avec un faisceau incliné peut être utilisé pour créer une topographie approximative (voir rubrique MEB en 3D). Cette topographie peut alors servir de base à un algorithme classique de rendu 3D pour créer un effet plus naturel et colorisé de la texture de la surface.
-
Cristaux de weddellite (oxalate de calcium dihydraté) sur la surface d'un calcul rénal. Image de microscopie électronique à balayage (MEB), surface dans la réalité = 0,35 × 0,45 mm.
-
La même après colorisation issue de l'évaluation de la topographie
-
-
La même après même procédé de colorisation
Colorisation d'images MEB
Souvent, les images MEB publiées sont colorisées, pour des raisons esthétiques, mais aussi pour apporter une apparence plus réaliste à l'échantillon ou pour favoriser son interprétation par la vision humaine34,35 La colorisation est une opération manuelle effectuée à l'aide de logiciels de retouche d'image, ou de manière semi-automatique à l'aide de logiciels dédiés utilisant une segmentation d'image permettant d'isoler les objets36,37.
-
-
La même après colorisation semi-automatique. Les couleurs arbitraires aident à identifier les différents éléments de la structure
-
Couleur obtenue à l'aide de détecteurs multiples
Dans certaines configurations, on peut recueillir plus d'un signal par pixel, le plus souvent en utilisant plusieurs détecteurs38. Un exemple assez courant est la composition d'une image à partir d'un détecteur d'électrons secondaires (SE) et d'un détecteur d'électrons rétrodiffusés (BSE). Une couleur différente est associée à chacun des détecteurs39,40, le résultat étant une image montrant à la fois la texture (visible dans l'image des électrons secondaires) et la composition (visible sous la forme d'une densité de nucléons dans l'image des électrons rétro-diffusés). Cette méthode est connue sous le nom de "DDC-SEM" (density-dependent colour SEM)41,42.
-
image DDC-SEM d'une particule calcifiée dans le tissu cardiaque - Signal 1 : SE
-
-
Image colorisée obtenue à partir des deux premières. Cette image DDC-SEM montre en orange une calcification, plus dense, (particule sphérique de phosphate de calcium), et en vert, la matrice extra-cellulaire, moins dense.
-
Image de moindre grossissement issue des mêmes travaux sur les tissus cardiovasculaires humains41
Signaux analytiques issus de photons secondaires
Il y a plusieurs interactions des électrons du canon du microscope avec la matière capables de produire des photons. On utilise en particulier l'analyse dispersive en énergie de rayons X pour la détection d'éléments chimiques, et la cathodoluminescence qui permet une analyse spectrale de la luminescence induite par les électrons. En microscopie électronique, il est courant de coder par la couleur ces signaux supplémentaires pour les rendre visibles, ce qui rend observable la distribution dans l'échantillon des différents composants. Il est possible d'aller plus loin en mariant également cette image colorisée de la composition avec une image des électrons secondaires (SE), ce qui permet de colocaliser sur une seule image la composition et la structure.
MEB et images 3D
Le microscope électronique à balayage permet de connaître l'échelle horizontale des images, mais pas naturellement leur échelle verticale : contrairement à d'autres microscopes comme le microscope à force atomique, le microscope électronique à balayage n'est pas nativement un instrument de topographie.[réf. souhaitée]
Toutefois, l'arrivée de l'informatique a permis d'utiliser des artifices permettant de créer des images tridimensionnelles. Parmi les méthodes ci-dessous, les deux premières sont les plus utilisées :
- En réalisant successivement deux images de l'échantillon avec un angle différent, le relief peut être reconstitué par une méthode photogrammétrique :
-
Paire stéréo d'images MEB de microfossiles d'Ostracoda obtenue en inclinant l'échantillon entre les deux images.
-
À partir de cette paire stéréo, la troisième dimension a été reconstruite par photogrammétrie à l'aide du logiciel MountainsMap SEM ; une succession de représentations 3D à différents angles a ensuite été réalisée et assemblée pour former cette animation au sein d'une image GIF.
- En utilisant un détecteur à quatre quadrants, il est possible de reconstituer une image en relief par une analyse de la réflexion différentielle (méthode dite "shape from shading"), dans la mesure où les pentes restent raisonnables : les pentes verticales et les surplombs sont ignorés, de sorte que si une sphère entière est posée sur une surface plane, seule son hémisphère supérieure en émergera après reconstruction 3D.[réf. souhaitée]
- La même méthode peut également être utilisée avec une seule image pour produire un pseudo-3D non métrologique si l'incidence des électrons est suffisamment rasante par rapport à une surface relativement plane :
-
image MEB d'un œil de mouche avec un grossissement x 450.
-
Détail de l'image précédente.
-
reconstruction 3D à partir de cette seule image SEM, à l'aide d'algorithmes "Shape from shading".
-
Même procédé, mais après homogénéisation de l'éclairage par logiciel
Certains constructeurs de microscopes proposent directement des outils pour la reconstruction topographique, et il existe également des logiciels commerciaux spécialisés qui sont compatibles avec les différents instruments du marché[réf. souhaitée].
Les applications de la reconstruction 3D du relief sont par exemple la connaissance de la rugosité (adhérence), de la surface développée (aire utile à la réaction chimique, en ratio de l'aire horizontale projetée), la mesure dimensionnelle des MEMS, ou plus simplement l'intérêt en termes de visualisation 3D (pouvoir tourner la surface a posteriori pour changer l'angle de vue)[réf. souhaitée].
Applications
Cette section ne cite aucune source et peut contenir des informations erronées (signalé en mars 2021).
Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » (modifier l'article).
Trouver des sources sur «
Microscopie électronique à balayage » :
Microélectronique, technologie des semiconducteurs et microfabrication
Images de MEB à faible énergie (1
kV) : Cette photo de 1995 montre une ligne de
photorésine de 120
nm de large et 1
µm de haut. On voit, sur les flancs de la photorésine, l'effet des ondes stationnaires du rayonnement UV utilisé pour l’exposition de la résine. Le MEB est un DSM 982 de chez Zeiss, équipé d’une colonne Gemini
La mise sur le marché des microscopes électroniques à balayage est à peu près contemporaine de l’envol de l’industrie des semi-conducteurs. C’est dans ce domaine d’activité que le MEB s’est répandu le plus massivement, étant reconnu comme un outil précieux dans la mise au point des procédés de fabrication des dispositifs dont l’élément caractéristique, la grille de transistor est passée d’une largeur typique de quelques micromètres à la fin des années 1960 à moins de 100 nanomètres au XXIe siècle. Non seulement le MEB a permis de voir au-delà des limites du microscope optique, mais la vision en relief s’est avérée très pratique pour l’aide à la microfabrication où il est souvent important de contrôler la verticalité des couches déposées ou des couches gravées. Voir, par exemple, sur la figure ci-contre, une image de MEB d’un motif de photorésine gravée.
Très populaire dans les laboratoires de recherche et développement, le MEB est également devenu un outil très répandu dans les unités de production, en tant qu’outil de contrôle industriel. La chambre d’analyse doit alors pouvoir accepter des tranches de silicium ((en) wafer) entières, c’est-à-dire dont le diamètre est, en 2006, de 200 mm ou 300 mm. On a même donné un nom particulier aux appareils qui effectue du contrôle dimensionnel, c’est-à-dire, qui vérifient la largeur d’une ligne. En anglais, on les appelle des CD-SEM. Ces appareils sont entièrement automatisés : ils ne produisent pas d’images à proprement parler : le calculateur de contrôle amène un motif de test exactement sur l’axe du faisceau qui est alors balayé dans une seule direction. Le signal du détecteur d’électrons secondaires est enregistré et analysé pour générer la largeur mesurée. Si celle-ci est en dehors du gabarit donné, l’alerte est donnée, et la tranche de silicium, considérée comme mauvaise, peut être rejetée.
Une autre application des MEB dans les unités de production de semiconducteurs est la caractérisation de microparticules qui contaminent la surface des tranches : le but est d’identifier la cause de la contamination afin de la supprimer. La particule dont la taille peut varier de 100 nm à 1 µm a été détectée par une machine d’inspection spécialisée qui communique les coordonnées de la particule au MEB d’analyse. Celui-ci est alors utilisé à la fois dans le mode imagerie, pour produire une image de la particule à fort grossissement et en microsonde de Castaing, ce qui implique que le MEB soit équipé d’un spectromètre X. L’image peut aider à l’identification de la particule, mais c’est surtout la caractérisation chimique résultant de l’analyse en longueur d’onde des rayons X qui donnera une piste permettant de remonter à la cause de la contamination.
La sonde électronique d’un MEB peut être utilisée non pas pour observer, mais pour écrire et fabriquer. Il s’agit alors de lithographie à faisceau d’électrons.
Science des matériaux
Les MEB utilisés en métallographie sont généralement équipés d’un spectromètre X qui permet leur utilisation en microsonde de Castaing. Ce sont des outils très communément répandus pour la caractérisation microstructurale des matériaux qui permettent d’obtenir à la fois des renseignements relatifs à la morphologie et à la répartition des constituants, et des informations cristallographiques et compositionnelles.
Pour obtenir certaines figures de diffraction (peudo-Kikuchi, Kossel), on est amené à pervertir le système de balayage de l’instrument : au lieu de générer un balayage en mode rectangulaire, on excite des bobines de déflexion de façon à faire pivoter le faisceau de plusieurs degrés autour d’un point fixe de l’échantillon. L’image générée est alors une figure de diffraction correspondant à une zone de l’échantillon de quelques micromètres.
-
-
Surface de fracture d’un acier bainitique
Pétrographie
Le MEB est largement utilisé dans les différentes branches de la géologie pour aider à l'identification des différentes phases minéralogiques. La pétrographie automatisée par MEB (QEMSCAN) représente une des grandes avancées récentes de la pétrographie mais reste cependant limitée par l'impossibilité de différencier les minéraux polymorphes.
-
-
Image QEMSCAN d'un grès fluviatile, grille=500 µm
Biologie
Au contraire des microscopes électroniques en transmission, le MEB se prête peu à l’étude des cellules. Par contre, la vision en relief du MEB se prête bien à l’observation des micro-organismes, pas forcément pour le pouvoir de résolution spatial, mais pour la profondeur de champ nettement plus élevée que celle des microscopes optiques.
-
Image prise au MEB de diverses sortes de pollens (fausses couleurs)
-
Image prise au MEB de Diatomées (grandissement X5000 X)
-
-
Divers
Le microscope électronique à balayage est l’un des appareils fondamentaux pour les recherches tribologiques[réf. souhaitée] ; voir à ce sujet le wikilivre de tribologie et plus spécialement le chapitre consacré à la genèse des frottements.
Marché
Le marché des microscopes (tous types confondus) est estimé à 811 millions de dollars US, dont environ 60 % sont générés par les microscopes optiques2. Avec 26 %, les microscopes électroniques représentent la deuxième part de ce marché, estimée en 1999 par Global Information Inc. à environ 222 millions de dollars43. Global Information Inc. estime également que la part des microscopes optiques ira en diminuant, celle des microscopes confocaux restera stable tandis que le marché des microscopes électroniques se développera. En 2005, il était estimé à 747 millions de dollars2.
Le prix moyen d’un MEB est estimé à 200 000 $ mais peut monter jusqu’à un million de dollars pour les appareils les plus avancés. Cependant, de nouveaux microscopes, qualifiés de microscope à bas prix (low-cost microscopes) ont été récemment proposés sur le marché, pour un tiers du prix moyen d’un MEB44.
Notes et références
- (en) Electron microprobe analysis: Merging of discoveries in physics, chemistry and microscopy [archive], p. 19, département de géologie, université du Wisconsin-Madison.
- (en) Hitachi breaks SEM resolution barrier [archive], www.labtechnologist.com, 10 mars 2005.
- « Dossier sagascience - Cellule animale » [archive], sur www.cnrs.fr.
- (Joseph Goldstein 1992, p. 21-24).
- (de) H. Busch, « Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde », Annalen der Physik, vol. 386, no 25, , p. 973-993 (DOI 10.1002/andp.19263862507), article [archive] disponible sur Gallica.
- (de) M. Knoll et E. Ruska, « Das Elektronenmikroskop », Zeitschrift für Physik A Hadrons and Nuclei, vol. 78, , p. 318-339 (DOI 10.1007/BF01342199).
- (de)M. Knoll, Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper, Zeitschrift fur technische Physik 16, 467-475 (1935).
- (de)M. von Ardenne, Das Elektronen-Rastermikroskop, Zeitschrift für Physik A Hadrons and Nuclei, 108(9-10):553-572, 1938.
- (en)Ernst Ruska, The Early Development of Electron Lenses and Electron Microscopy (traduction de Mulvey T), Hirzel, Stuttgart, 1980, (ISBN 3-7776-0364-3).
- (en) K.C.A. Smith, Charles Oatley: Pioneer of scanning electron microscopy, EMAG '97 Proceedings, IOP Publishing Lt, 1997 [archive].
- (Joseph Goldstein 1992, p. 69).
- (Joseph Goldstein 1992, p. 106-115).
- (Joseph Goldstein 1992, p. 90-104).
- (Joseph Goldstein 1992, p. 142).
- (Joseph Goldstein 1992, p. 116-141).
- (Joseph Goldstein 1992, p. 25-42).
- (Joseph Goldstein 1992, p. 29).
- (Joseph Goldstein 1992, p. 30).
- Michael T. Postek, The Scanning Electron Microscope in Handbook of Charged Particle Optics, CRC Press, Université du Maryland, 1997.
- Selon la brochure New-Technology Scanning Electron Microscope DSM 982 Gemini de la société Karl Zeiss, 1998.
- Postek, p. 366. Il semble que dans ce tableau Comparison of Pertinent Electron Source Characteristics toutes les brillances soient trop fortes d’un facteur 10. Dans le tableau ci-dessous, la ligne brillance a été corrigée de ce facteur 10.
- (en) Gemini optical column [archive].
- (Joseph Goldstein 1992, p. 177-180).
- (en) P. Hortolà, « Evaluating the Use of Synthetic Replicas for SEM Identification of Bloodstains (with Emphasis on Archaeological and Ethnographic Artifacts) », Microscopy and Microanalysis 21, , p. 1504–1513 (lire en ligne [archive]).
- (Joseph Goldstein 1992, p. 198-214).
- (Joseph Goldstein 1992, p. 191-194).
- (en) ELECTRON BACKSCATTERED DIFFRACTION sur le site de l’université de Strathclyde [archive].
- (en) Electron Beam-Induced Current (EBIC) Analysis [archive], semiconfareast.com.
- (Joseph Goldstein 1992, p. 273-340 et 525-546).
- « Le microscope électronique à balayage et à vide partiel sur le site de L'Université du Québec à Montréal » [archive].
- « Faculté des arts, lettres, langues, sciences humaines (UFR ALLSH) - Aix Marseille Université » [archive], sur www.up.univ-mrs.fr.
- « Athene M. McDonald, Environmental Scanning Electron Microscopy - ESEM, Materials World, Vol. 6 no. 7, p. 399-401, July 1998. »(Archive.org • Wikiwix • Archive.is • http://www.azom.com/details.asp?ArticleID=1556," rel="nofollow" class="external text">Google • Que faire ?).
- (en) Jeremy Burgess, Under the Microscope : A Hidden World Revealed, CUP Archive, (ISBN 0-521-39940-8, lire en ligne [archive]), p. 11.
- (en) P. Hortolà, « Using digital colour to increase the realistic appearance of SEM micrographs of bloodstains », Micron, vol. 41, no 7, , p. 904–908 (PMID 20638857, DOI 10.1016/j.micron.2010.06.010).
- (en) « Introduction to Electron Microscopy » [archive], FEI Company (consulté le ), p. 15.
- (en) « Next Monday, Digital Surf to Launch Revolutionary SEM Image Colorization » [archive], AZO Materials (consulté le ).
- [ « http://www.mesures.com/vision-industrielle/logiciels-de-traitement-d-images/item/12626 »(Archive.org • Wikiwix • Archive.is • http://www.mesures.com/vision-industrielle/logiciels-de-traitement-d-images/item/12626" rel="nofollow" class="external text">Google • Que faire ?) Le microscopie électronique à balayage prend des couleurs sur la revue Mesures du 29 janvier 2016].
- (en) A. Antonovsky, « The application of colour to SEM imaging for increased definition », Micron and Microscopica Acta, vol. 15, no 2, , p. 77–84 (DOI 10.1016/0739-6260(84)90005-4).
- (en) G.D. Danilatos, « Colour micrographs for backscattered electron signals in the SEM », Scanning, vol. 9, no 3, , p. 8–18 (DOI 10.1111/j.1365-2818.1986.tb04287.x).
- (en) G.D. Danilatos, « Environmental scanning electron microscopy in colour », J. Microscopy, vol. 142, , p. 317–325 (DOI 10.1002/sca.4950080104).
- S. Bertazzo, E. Gentleman, K. L. Cloyd, A. H. Chester, M. H. Yacoub et M. M. Stevens, « Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification », Nature Materials, vol. 12, no 6, , p. 576–583 (PMID 23603848, DOI 10.1038/nmat3627).
- (en) Sergio Bertazzo, Susannah C. R. Maidment, Charalambos Kallepitis, Sarah Fearn, Molly M. Stevens et Hai-nan Xie, « Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens », Nature Communications, vol. 6, , p. 7352 (PMID 26056764, PMCID 4468865, DOI 10.1038/ncomms8352).
- (en) MEMS technology magnifies opportunities for low-cost SEM [archive], Small Times, .
Bibliographie
- Charles William Oatley, The Scanning electron microscope. Pt 1, The instrument., Cambridge University Press, Londres, 1972, (ISBN 0-521-08531-4)
- (en) Ernst Ruska, The early Development of Electron Lenses and Electron Microscopy, [détail de l’édition]
- Michael T. Postek, The Scanning Electron Microscope in Handbook of Charged Particle Optics, CRC Press, Université du Maryland, 1997, (ISBN 0-8493-2513-7)
- Joseph Goldstein, Dale E. Newbury, Patrick Echlin, Charles E. Lyman, David C. Joy, Eric Lifshin, L. C. Sawyer, J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis : Third Edition, Springer Verlag, , 689 p. (ISBN 978-0-306-47292-3, lire en ligne [archive])
- Jacky Ruste, Microscopie électronique à balayage, Techniques de l’Ingénieur, 2013, in Analyse et caractérisation.
- Christian Colliex, La Microscopie électronique, [détail de l’édition] (lire en ligne [archive])
Liens externes
Sur les autres projets Wikimedia :
- Sur le principe du microscope électronique à balayage
- Sur l’histoire du microscope électronique à balayage
- Sur la préparation des échantillons
- Sur la diffraction d’électrons rétrodiffusés
- Sur l’imagerie par courant d’échantillon
- Galerie d’images
- Associations (formations et ressources)
Spectromètre
Un spectromètre est un appareil de mesure permettant de décomposer une quantité observée — un faisceau lumineux en spectroscopie, ou bien un mélange de molécules par exemple en spectrométrie de masse — en ses éléments simples qui constituent son spectre. En optique, il s'agit d'obtenir les longueurs d'onde spécifiques constituant le faisceau lumineux (spectre électromagnétique) tandis que, pour un mélange chimique, il s'agira d'obtenir les masses spécifiques de chacune des molécules (spectre de masse). Des spectromètres sont également utilisés en acoustique afin d'analyser la composition d'un signal sonore. De façon générale l'étude des spectres est appelée la spectrométrie.
Dans le cas de l'optique (mais c'est également vrai en chimie), « spectromètre » est un terme qui désigne en pratique une grande famille d'instruments permettant de balayer un large éventail de longueurs d'onde, des rayons gamma et des rayons X jusqu'à l'infrarouge. Cependant chaque type de spectromètre est associé à une bande de fréquence particulière et nécessite une technologie spécifique.
Différents types de spectromètres sont employés :
Spectromètre
La variable mesurée est le plus souvent l'intensité de la lumière mais pourrait être également, par exemple, l'état de polarisation<