Imprimer
Catégorie : Education Nationale
Affichages : 633

Oscilloscope

 
 
 

Un oscilloscope, ou oscillographe1, est un instrument de mesure destiné à visualiser un signal électrique, le plus souvent variable au cours du temps. Il permet d'observer les variations temporelles, soit de tensions électriques, soit de diverses autres grandeurs physiques préalablement transformées en tension au moyen de convertisseurs adaptés ou de capteurs. La courbe de rendu d'un oscilloscope est appelée oscillogramme.


On distingue généralement les oscilloscopes analogiques qui utilisent directement un multiple de la tension d'entrée pour produire la déviation du spot, et les oscilloscopes numériques qui transforment, préalablement à tout traitement, la tension d'entrée en nombre. L'affichage est reconstruit après coup. Il devient alors une fonction annexe de l'appareil qui peut même en être dépourvu, la représentation du signal étant effectuée par un ordinateur extérieur relié à l'oscilloscope.

 
Oscilloscope

Les oscilloscopes analogiques

 
Oscilloscope Tektronix 465 typique de la fin des années 1970.

Ce type d'appareil est en voie d'obsolescence car il ne permet généralement que l'observation de tensions périodiques. Il est de plus en plus remplacé par les oscilloscopes numériques.

Ne sont décrites dans ce paragraphe que des généralités concernant les calibres de tension et la base de temps d’un oscilloscope analogique.

Fonctionnement interne de l’oscilloscope

 
Figure de Lissajous sur un oscilloscope, avec 90 degrés de déphasage entre les entrées X et Y.

Le signal à mesurer est visualisé sur un tube cathodique généralement vert. La trace de l’oscilloscope est déterminée par deux composantes : une horizontale et une verticale.

Le mode XY permet, entre autres :

La base de temps

 
Signaux visualisés par un oscilloscope multitrace.

La base de temps est caractérisée par une tension en dents de scie appliquée aux deux plaques verticales (voir schéma). En même temps, le canon à électrons projette un faisceau d'électrons entre les deux plaques (la densité du faisceau correspond à l'intensité lumineuse) :

Tension appliquée par l’utilisateur

 
Fonctionnement simplifié de la déviation verticale (tension) dans un oscilloscope analogique.

De la même manière que pour la base de temps, la visualisation de la tension appliquée à l’entrée de l’oscilloscope par l’utilisateur se fait à l’aide des plaques horizontales (voir schéma) qui font dévier la trajectoire des électrons verticalement.

La position en ordonnée dépend directement de la tension appliquée par l’utilisateur. La base de temps fonctionnant en permanence, la tension d’entrée (amplifiée auparavant) évolue au cours du temps.

Utilisation des entrées différentielles

Lors de l'utilisation d'oscilloscopes alimentés par le réseau électrique que l'on cherchera à visualiser, différents problèmes peuvent apparaitre :

Pour éviter ces défauts, on peut soit utiliser des oscilloscopes à entrées différentielles intégrées, soit utiliser une ou plusieurs sondes différentielles [archive]. Ces appareils auront pour but d'assurer l'isolation galvanique (avec des optocoupleurs par exemple) entre les différents potentiels de mesure sur le circuit et les potentiels de l'oscilloscope (entrée et masse).

Les oscilloscopes numériques

 
 
Oscilloscope numérique.
 
Boitier d'acquisition oscilloscope USB.

Contrairement aux modèles analogiques, le signal à visualiser est préalablement numérisé par un convertisseur analogique-numérique (interface A/D). La capacité de l'appareil à afficher un signal de fréquence élevée sans distorsion dépend de la qualité de cette interface.

Les principales caractéristiques à prendre en compte sont :

L'appareil est couplé à des mémoires permettant de stocker ces signaux et à un certain nombre d'organes d'analyse et de traitement qui permettent d'obtenir de nombreuses caractéristiques du signal observé :

Les oscilloscopes numériques ont désormais complètement supplanté leurs prédécesseurs analogiques, grâce à leur plus grande portabilité, une plus grande facilité d'utilisation et, surtout, leur coût réduit.

L'informatique a permis la miniaturisation des oscilloscopes. Certains modèles, de la taille d'un paquet de cigarettes sont seulement munis d'une connexion USB et de deux connecteurs BNC (pour les signaux d'entrée). L'affichage, les commandes et l'alimentation (USB) s'effectuant exclusivement à partir de l'ordinateur (ordinateur portable, tablette...) auquel ils sont branchés. Les constructeurs tels que Pico technology (avec les picoscope), Red Pitaya ou encore Digilent, proposent ce type de solution.

Notes et références

Annexes

Sur les autres projets Wikimedia :

Articles connexes

Liens externes

Multimètre

 
 
 

Un multimètre (parfois appelé contrôleur universel) est un ensemble d'appareils de mesures électriques regroupés en un seul boîtier1, généralement constitué d'un voltmètre, d'un ampèremètre et d'un ohmmètre. Les fonctions voltmètre et ampèremètre sont disponibles en continu et en alternatif.

 
Un multimètre à affichage numérique.

Types

Il existe plusieurs types de multimètre :

Multimètre analogique à aiguille
c'est le premier à être apparu. Construit autour d'un ampèremètre généralement de type magnétoélectrique et comporte un convertisseur tension-courant. L'avantage majeur est de ne pas nécessiter de pile pour les mesures de tension et de courant. Par ailleurs, à prix équivalent, leur bande passante est beaucoup plus large, autorisant ainsi des mesures en AC sur plusieurs centaines de kilohertz là où un modèle numérique standard se cantonne à quelques centaines de hertz. C'est pour cette raison qu'ils sont encore très utilisés en test sur du matériel Hi-Fi.
Multimètre numérique de poche
avec l'apparition de circuits intégrés spécialisés (convertisseur analogique numérique CAN), il apparaît dans les années 1970 et comporte les cinq fonctions principales (tension continue, tension alternative, résistance, intensité de courant continu et intensité de courant alternatif). Des fonctions annexes permettent la vérification des jonctions de diodes ou de transistors, puis viennent les mesures de condensateurs, de température, de fréquence. Toutefois, sur certains multimètres numériques la valeur affichée fluctue, parfois rapidement, sur les derniers digits. Cela rend la mesure plus difficile à évaluer, et l'attente de la stabilisation de la mesure ralentit le travail. Autre inconvénient, les multimètres numériques étant beaucoup plus sensibles aux signaux parasites externes (à cause de leur haute impédance d'entrée), la mesure peut alors s'avérer moins fiable. Appareil d'entrée de gamme à milieu de gamme, les prix varient donc d'une quinzaine d'euros actuellement (2020), à quelques centaines d'euros pour des modèles de qualité pouvant être utilisés en atelier d'électronique.
Multimètre numérique de laboratoire
l'exactitude des multimètres de poche étant limitée, les besoins industriels et métrologiques ont conduit les grands fabricants de matériels de mesure (Rochar, Schlumberger Hewlett-Packard dès les années 1970, Fluke, Keysight actuellement...) à construire des instruments de plus en plus performants, avec des exactitudes actuelles de quelque 10-6 en tension continue. La capacité d'affichage va jusqu'à 20 millions de points. L'exactitude de ce type de multimètre dépend d'un grand nombre de paramètres (compensations des dérives, composants ultra faible bruit, isolations...). La conversion tension est actuellement de type convertisseur multi-rampe. La partie alternative est assurée soit par des convertisseurs rms classiques, soit par convertisseurs rms faisant appel à la conversion thermique d'un signal alternatif. Les shunts utilisés (en continu et alternatif) permettent la mesure d'intensité de courant allant de quelques centaines de nA à 10 A. Le prix de ces matériels va jusqu'à 20 000  environ.

Description

Le choix du type de mesure (de l'instrument), du calibre ou échelle de mesure se fait généralement à l'aide d'un commutateur rotatif, des boutons poussoirs peuvent commander des fonctions supplémentaires. Les multimètres les plus récents, souvent les plus simples d'emploi, choisissent automatiquement le bon mode et le bon calibre.

D'autres fonctions de mesure peuvent être disponibles selon le degré de sophistication du multimètre :

Notes et références

Annexes

Sur les autres projets Wikimedia :

Articles connexes

 

Ampèremètre

 
 
 
 
Un ampèremètre permet de mesurer l'intensité d'un courant électrique (ici un microampèremètre analogique à zéro central).
 
Représentation symbolique d'un ampèremètre dans un circuit.

Un ampèremètre est un appareil de mesure de l'intensité d'un courant électrique dans un circuit. L'unité de mesure de l'intensité est l'ampère, symbole: A.

Types d'ampèremètres

Ampèremètres analogiques

Il en existe plusieurs types principaux :

 
Fonctionnement général d'un ampèremètre magnéto-électrique.
 
Ampèremètres ferromagnétiques de tableau.

Les ampèremètres analogiques sont de plus en plus remplacés par des ampèremètres numériques. Pourtant, en pratique, l'observation de leur aiguille peut fournir des informations visuelles rapide sur les variations du courant mesuré que l'affichage numérique ne donne que difficilement.

Ampèremètre numérique

 
Multimètre numérique Fluke 179 en position d'ampèremètre (alternatif efficace), calibre 10 A.

C'est en fait un voltmètre numérique mesurant la tension produite par le courant à mesurer dans une résistance (appelée shunt). La valeur du shunt dépend du calibre utilisé. En application de la loi d'Ohm, la tension U mesurée est convertie, en fonction de la valeur de résistance connue R du shunt, en une valeur A correspondant au courant2.

Ampèremètres spéciaux

 
Pince ampèremétrique (calibres 6 A, 60 A et 300 A).

Il existe des ampèremètres particuliers :

Utilisation d'un ampèremètre

Montage

Un ampèremètre se branche en série dans le circuit10. Cela veut dire qu'il faut ouvrir le circuit à l'endroit où l'on souhaite mesurer l'intensité et placer l'ampèremètre entre les deux bornes créées par cette ouverture du circuit10.

Sens du branchement et polarité

Un ampèremètre mesure l'intensité circulant de la borne A (ou borne +) vers la borne COM (ou borne -) en tenant compte de son signe.

En général, l'aiguille des ampèremètres analogiques ne peut dévier que dans un sens10. Cela impose de réfléchir au sens du courant et impose de câbler l'ampèremètre de manière à mesurer une intensité positive : on vérifie alors que la borne + de l'ampèremètre est reliée (éventuellement en traversant un ou plusieurs dipôles) au pôle + du générateur et que la borne - de l'ampèremètre est reliée (éventuellement en traversant un ou plusieurs dipôles) au pôle - du générateur10.

Calibre

On appelle calibre la plus forte intensité que peut mesurer l'ampèremètre11.

Tous les appareils modernes sont multi calibres : on change de calibre soit en tournant un commutateur, soit en déplaçant une fiche. Les appareils les plus récents sont autocalibrables (autorange en anglais) et ne nécessitent aucune manipulation.

Lorsqu'on utilise un ampèremètre analogique, il faut éviter d'utiliser un calibre plus petit que l'intensité du courant. Cela impose de déterminer par le calcul un ordre de grandeur de cette intensité et de choisir le calibre en conséquence. Si on n'a aucune idée de l'ordre de grandeur de l'intensité que l'on va mesurer, il est souhaitable de partir du plus haut calibre, en général suffisant. On obtient ainsi une idée du courant circulant dans le circuit. Puis on diminue le calibre jusqu'à atteindre le calibre le plus petit possible, tout en gardant une valeur supérieure au courant mesuré. Il est cependant nécessaire de procéder au changement de calibre avec précaution, par exemple en coupant le courant ou en shuntant l'ampèremètre pendant le changement de calibre de l'appareil, surtout si le circuit est inductif.

Lecture

La lecture d'un appareil numérique est directe et fonction du calibre sélectionné.

Pour l'ampèremètre analogique, l'aiguille se déplace sur une graduation commune à plusieurs calibres. L'indication lue ne représente qu'un nombre de divisions. Il faut donc déduire l'intensité à partir de ce nombre en tenant compte de la valeur du calibre en faisant un calcul, sachant que la graduation maximale correspond au calibre2 :

Intensité mesurée = G l u e G m a x ⋅ C a l

avec

G l u e  : graduation lue
G m a x  : graduation maximale
C a l  : Calibre utilisé

Notes et références

  1. Laurent 1942, p. 23.

Bibliographie

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.

Annexes

Article connexe

Liens externes

 

Voltmètre

 
 
 
 
Représentation symbolique d'un voltmètre dans un circuit
 
Voltmètre analogique

Le voltmètre est un appareil qui permet de mesurer la tension (ou différence de potentiel électrique) entre deux points, grandeur dont l'unité de mesure est le volt (V)1. Le plus souvent, il peut mesurer des tensions continues et alternatives. La grande majorité des appareils de mesure actuels est construite autour d'un voltmètre numérique, la grandeur physique à mesurer étant convertie en tension à l'aide d'un capteur approprié. C'est le cas du multimètre numérique qui, en plus d'offrir la fonction voltmètre, comporte au moins un convertisseur courant tension permettant de le faire fonctionner en ampèremètre et un générateur de courant constant pour fonctionner en ohmmètre.

Les différents types de voltmètre

Voltmètres analogiques

 
Voltmetre magnétoélectrique de démonstration

Ils sont en voie de disparition, bien qu'encore utilisés comme indicateurs rapides de l'ordre de grandeur ou de la variation de la tension mesurée. Ils sont généralement constitués d'un milliampèremètre en série avec une résistance élevée. Toutefois cette résistance, de l'ordre de quelques kΩ, est nettement inférieure à la résistance interne des voltmètres numériques, habituellement égale à 10 . Pour cette raison, les voltmètres analogiques introduisent une perturbation plus importante dans les circuits dans lesquels ils sont introduits que les voltmètres numériques. Pour limiter cette perturbation, on est allé jusqu'à utiliser des galvanomètres d'une sensibilité de 15 microampères pour la pleine échelle sur des contrôleurs universels (combinaison voltmètre-microampèremètre-ohmmètre-capacimètre) de haut de gamme. (Métrix MX 205 A par exemple)

Voltmètres magnétoélectriques

Un voltmètre magnétoélectrique est constitué d'un galvanomètre, donc un milliampèremètre magnétoélectrique très sensible, en série avec une résistance additionnelle de valeur élevée (de quelques kΩ à quelques centaines de kΩ). On réalise un voltmètre à plusieurs calibres de mesure en changeant la valeur de la résistance additionnelle. Pour les mesures en courant alternatif, un pont redresseur à diodes est intercalé mais ce procédé ne permet de mesurer que des tensions sinusoïdales. Ils ont toutefois un certain nombre d'avantages : ils ne nécessitent pas de pile pour fonctionner. Par ailleurs, à prix équivalent, leur bande passante est beaucoup plus large, autorisant ainsi des mesures en AC sur plusieurs centaines de kilohertz là où un modèle numérique standard se cantonne à quelques centaines de hertz. C'est pour cette raison qu'ils sont encore très utilisés en test sur du matériel électronique fonctionnant à des fréquences élevées (HI-FI)

Voltmètres ferroélectriques

Un voltmètre ferroélectrique est constitué d'un milliampèremètre ferroélectrique en série avec une résistance additionnelle de valeur élevée (de quelques centaines d'Ω à quelques centaines de kΩ). Comme les ampèremètres du même type le font pour les courants, ils permettent de mesurer la valeur efficace de tensions de forme quelconque (mais de fréquence faible < 1 kHz).

Voltmètres numériques

 
Voltmètres à affichage numérique

Ils sont généralement constitués d'un convertisseur analogique-numérique double rampe, d'un système de traitement et d'un système d'affichage.

Mesure des valeurs moyennes de tensions continues

La tension à mesurer est appliquée à l'entrée du convertisseur analogique-numérique à travers une résistance dont la valeur dépend du calibre choisi, puis l'organe de traitement, tenant compte de ce calibre, permet d'afficher la valeur moyenne de cette tension.

Mesure des valeurs efficaces des tensions alternatives

Voltmètre « bas de gamme »

Il n'est utilisable que pour la mesure des tensions sinusoïdales dans le domaine de fréquence des réseaux de distribution électrique. La tension à mesurer est redressée par un pont de diodes puis traitée comme une tension continue. Le voltmètre affiche ensuite une valeur égale à 1,11 fois la valeur moyenne de la tension redressée. Si la tension est sinusoïdale, le résultat affiché est la valeur efficace de la tension ; si elle ne l'est pas, il n'a aucun sens.

Voltmètre « efficace vrai »

La majorité des appareils commercialisés effectuent cette mesure en trois étapes :

  1. La tension est élevée au carré par un multiplieur analogique de précision.
  2. L'appareil réalise la conversion analogique-numérique de la moyenne du carré de la tension
  3. La racine carrée de cette valeur est ensuite effectuée numériquement.

Le multiplieur analogique de précision étant un composant coûteux, ces voltmètres sont trois à quatre fois plus chers que les précédents. La numérisation quasi totale du calcul permet de réduire le coût tout en améliorant la précision.

D'autres méthodes de mesure sont également utilisées, par exemple :

On distingue deux types de voltmètres « efficace vrai » :

Historique

Le premier voltmètre numérique a été conçu et construit par Andrew Kay (en) en 1953

Résistance interne

La mesure avec un voltmètre s'effectue en le branchant en parallèle sur la portion de circuit dont on désire connaître la différence de potentiel. Ainsi en théorie, pour que la présence de l'appareil ne modifie pas la répartition des potentiels et des courants au sein du circuit, aucun courant ne devrait circuler dans son capteur. Ce qui implique que la résistance interne dudit capteur soit infinie, ou du moins soit la plus grande possible par rapport à la résistance du circuit à mesurer.

Notes et références

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Ohmmètre

 
 
 
 
Représentation symbolique d'un ohmmètre dans un circuit

Un ohmmètre est un instrument de mesure qui permet de mesurer la résistance électrique d'un composant ou d'un circuit électrique. L'unité de mesure est l'ohm, dont le symbole est Ω.

Principe de fonctionnement

Deux méthodes peuvent être utilisées pour mesurer la valeur d'une résistance :

  1. Mesure d'une tension avec un générateur de courant1 ;
  2. Mesure d'un courant avec un générateur de tension1.

Générateur de courant

Un générateur de courant impose une intensité IM à travers la résistance inconnue RX, on mesure la tension VM apparaissant à ses bornes.

 

Générateur de tension

On utilise un ampèremètre pour mesurer le courant I circulant dans une résistance RX à laquelle on applique une faible tension V définie.

 

Types

 
Ohmmètre analogique

Il existe 2 types d'ohmetre :

 

Notes et références

  1. Projet électronique : Ohmmètre numérique (PIC16F877A) [archive], electronique-mixte.fr, consulté le 20 juin 2019

Annexes

Articles connexes

Tensiomètre

 
 
 
 
Tensiomètre aneroïde Spengler avec sangles.

Un tensiomètre, ou sphygmomanomètre, est un appareil de mesure médical utilisé pour mesurer la pression artérielle.

Le terme dérive du grec sphygmós (pouls) associé à manomètre.

Historique

Expériences sur les animaux

En 1733, Stephen Hales trouve une méthode pour visualiser la pression artérielle, méthode présentée dans sa publication Haemastaticks, traduit en français sous le titre la statique des animaux. Il insère un tube droit en verre de 9 pieds de long, à travers une canule dans l'artère d'un cheval, note la hauteur atteinte par le sang dans le tube (indicatrice de pression) et les variations à chaque pulsation1.

En 1828, dans sa thèse de doctorat (« Recherches sur la force du cœur aortique »), Poiseuille améliore l'expérience de Hales en remplaçant le tube droit par un tube en U partiellement empli de mercure. Il est le premier à montrer comment mesurer la pression sanguine, à l'aide d'un manomètre à mercure qu'il appelait hématodynamomètre. Grâce à cet instrument, plus petit et plus commode que celui de Hales, il démontre que la tension augmente à l’expiration et diminue à l'inspiration2.

Sphygmomètres chez l'homme

Les sphygmomètres et sphygmographes sont des appareils mesurant les battements du pouls, de façon non intrusive (sans ouverture d'une artère), ce qui les rend applicables à l'homme.

Premiers tensiomètres

 
Tensiomètre inventé par Emile Spengler, Henry Vaquez et Charles Laubry.

En 1876, Samuel Siegfried Karl von Basch invente le sphygmomanomètre, un appareil utilisant la force compressive d'un réservoir de caoutchouc empli d'eau, que le médecin presse directement sur l'artère jusqu'à la disparition du pouls. Le réservoir est relié à une jauge à mercure permettant de lire la pression nécessaire pour comprimer l'artère, et en conséquence la pression artérielle1.

En 1889, Pierre Carl Potain l'améliore en remplaçant l'eau par de l'air.

En 1896, le médecin italien Scipione Riva-Rocci réalise le prototype des tensiomètres modernes, en comprimant l'artère par un brassard circulaire constituant une poche à air.

En 1905, Nikolaï Korotkov ou Korotkoff est le premier à permettre une mesure assez précise pour qu’on puisse diagnostiquer l’hypertension en reprenant le sphygmomanomètre de Riva Rocci. À la seule prise du pouls, il ajoute l’auscultation en utilisant un stéthoscope posé sur l’artère brachiale, ce qui permet des mesures plus précises.

Le premier bruit entendu correspond à la mesure de la pression systolique, le plus gros des deux chiffres de la mesure de la pression artérielle. Plusieurs bruits sont entendus jusqu’à la disparition. Le dernier bruit entendu correspond à la pression diastolique qui est le bruit de la pression au moment où le cœur est au repos, le plus petit chiffre. Grâce à Korotkoff, on réussit à avoir une mesure précise et les bruits qu’on entend lorsqu’on mesure la pression artérielle portent dorénavant le nom de « bruits de Korotkoff ». Cette méthode est toujours utilisée au début du XXIe siècle.

1907 L'invention du tensiomètre moderne

 
Charles Laubry qui prend la tension à Emile Spengler
 
Tensiomètre à oscillation type Pachon fabriqué par Emile Spengler

Au début des années 1900, Émile Spengler, industriel reconnu et passionné de médecine, s’associe aux professeurs et cardiologues Henri Vaquez et Charles Laubry dans le but de mettre au point un nouvel appareil de mesure de la pression artérielle. En 1907, après des mois de recherche, ils parviennent à développer le premier tensiomètre moderne, le « Vaquez  », permettant au diagnostic médical d'entrer dans l'ère de la modernité.

En 1909, Victor Pachon ajoute un oscillomètre, ce qui permet de mesurer la tension artérielle sans stéthoscope3. Le « Pachon » comporte deux cadrans : un cadran gradué de 0 à 20 permettant de mesurer l'amplitude des oscillations de la paroi artérielle et un manomètre gradué de 0 à 30 cm de mercure, relié par un tuyau de caoutchouc à un brassard4. Cependant cette technique laisse une grande part de subjectivité puisque la personne qui prend la tension doit apprécier les oscillations5. Cet appareil simple a cependant été très utilisé pendant la Première Guerre mondiale6.

Technique

 
La prise de la tension au tensiomètre manuel et stéthoscope constitue la méthode de référence.

La prise de la tension au tensiomètre manuel et stéthoscope constitue la méthode de référence.

Le sphygmomanomètre manuel est composé d'un brassard gonflable, d'un système de mesure (manomètre), d'un tube qui les relie, et d'une poire servant à augmenter la pression dans le manchon, également reliée à ce dernier par un tube. La poire est équipée d'une soupape permettant de contrôler la pression et de la faire diminuer progressivement pour effectuer la mesure.

Le tensiomètre manuel est utilisé conjointement avec un stéthoscope, qui permet à l'examinateur de déceler la reprise (pression systolique) ou la disparition (pression diastolique) audible des battements cardiaques dans l'artère du bras. Le protocole de mesure est le suivant :

La taille du brassard doit être adaptée à celle du bras7.

 
Tensiomètre électronique automatique.

Les tensiomètres manuels médicaux sont des tensiomètres professionnels, la plupart du temps utilisés par les médecins. Ils ne sont donc pas électriques et sont équipés d'une poire, dont l'utilisateur exerce quelques pressions pour gonfler le brassard autour du bras ou du poignet du patient. Noter que certains modèles encore en service en 2013 dans les cabinets médicaux utilisent un tube en U à mercure comme système de mesure.

On utilise maintenant souvent des appareils automatiques, dont le brassard se gonfle automatiquement, et qui ne nécessitent plus de stéthoscope, grâce à l'utilisation de capteurs intégrés. Ces derniers sont soit acoustiques, reproduisant la prise de tension manuelle au stéthoscope mais exigeant un bon positionnement du brassard, soit pléthysmographique, où c'est la pulsation qui est détectée. Suivant le dispositif, Le brassard se situe au niveau du bras (mesure brachiale), ou au niveau du poignet.

Depuis 2012, on voit apparaître une nouvelle génération de tensiomètres connectés permettant une prise de la tension et un échange de données fiables avec le corps médical8.

Notes et références

  1. « Bien choisir son tensiomètre » [archive], sur Automesure.com, (consulté le )

Sur les autres projets Wikimedia :

Voir aussi

Tensiomètre à anneau de du Noüy

 
 
 
 
Tensiomètre de du Noüy. La flèche montre l'anneau.
 
Gros plan de l'anneau en train d'être retiré du liquide.

Le tensiomètre à anneau de du Noüy est un appareil utilisant un anneau qui permet de mesurer la tension superficielle à une interface liquide-air et la tension interfaciale à une interface entre deux liquides non miscibles. Ce tensiomètre a été proposé par le physicien français Pierre Lecomte du Noüy (1883–1947) dans un article publié en 19251.

Les normes NF EN 142102 et NF EN 143703 décrivent cette technique ainsi qu’une technique proche, celle de la plaque de Wilhelmy.

Utilisation

En plus de la détermination des tensions de surface et d’interface, l’anneau de du Noüy permet de déterminer la concentration micellaire critique des tensioactifs.

L’anneau de du Noüy est surtout utilisé pour les huiles pour transformateur, les solutions de tensioactifs et les produits de nettoyage.

Mode opératoire

Un anneau généralement en platine propre est placé sous la surface du liquide à étudier. L’anneau est retiré vers le haut jusqu'à ce qu'il traverse la surface du liquide.

La force, F , nécessaire pour retirer l’anneau de la surface du liquide est mesurée et liée à la tension de surface de ce dernier γ :

F = 2 π ⋅ ( r i + r a ) ⋅ γ

Avec r i , rayon intérieur de l’anneau et r a , rayon extérieur de l’anneau4.

Références

  1. (en) Hans-Jürgen Butt, Karlheinz Graf et Michael Kappl, Physics and Chemistry of Interfaces, , 3e éd., 14–15 p. (ISBN 978-3-527-41216-7, lire en ligne [archive])

Liens externes