Imprimer
Catégorie : Technologies
Affichages : 974

Dynamo

 
 
 

Le mot dynamo est l'abréviation de « machine dynamoélectrique ». La dynamo désigne une machine électrique, à courant continu (ou machine dite de Gramme) qui fonctionne en générateur électrique. Elle convertit l'énergie mécanique en énergie électrique1 en utilisant l'induction électromagnétique, de façon similaire à une magnéto. La dynamo est moins utilisée que l'autre type de générateur, les alternateurs (machine électrique synchrone - dont les mal nommées "dynamos" de bicyclettes), étant en général un peu plus coûteuse et de moindre rendement. Elle a été créée par Werner von Siemens.

 
Au début du XXe siècle, machines à vapeur et dynamos d'une usine de production électrique de la Compagnie des tramways de l'Est parisien
 
Centrale électrique de l'Usine des Forges de Montataire au début du XXe siècle : au fond, la machine à vapeur, qui entraîne, par l’intermédiaire du volant d'inertie, une dynamo (à droite)

Exemples de dynamo

La dynamo était utilisée pour produire l'électricité dans les automobiles jusque dans les années 1960a. Depuis, un alternateur, dont le courant alternatif est redressé par des diodes, la remplace.

On appelle souvent, de manière abusive, « dynamo » le générateur électrique de bicyclette qui produit un courant alternatif alors qu'une dynamo produit un courant continu1.

On appelle dynamo terrestre le mécanisme qui transforme l'énergie des courants turbulents de particules chargées électriquement circulant entre le noyau et le manteau en un champ magnétique. Entre autres effets, ce champ permet de dévier les particules du vent solaire (constitué de particules électriquement chargées sensibles aux champs magnétiques), protégeant ainsi la Terre d'un flux important de rayonnements ionisants qui, à défaut, aurait empêché le développement de la vie, telle qu'on la connait, sur Terre.

Principe

La dynamo met en œuvre l'induction électromagnétique. En faisant tourner une bobine dans le champ magnétique d'un aimant permanent ou d'un électro-aimant, on produit une tension induite dans les fils de celle-ci. Cette tension est collectée grâce à des balais situés sur la ligne neutre, lesquels sont reliés à des collecteurs. La tension ainsi collectée est appliquée à un circuit fermé, ce qui génère un courant induit2.

Jalons historiques

Historiquement, grâce à Étienne Œhmichen, la dynamo a été utilisée pour produire l'électricité dans les automobiles jusque dans les années 1960. Les progrès de l’électronique et plus particulièrement de diodes électroniques fiables et compactes a permis d'utiliser un ensemble alternateur + redresseur plus compact et plus fiableb.

Les premiers appareils électriques, les tubes des postes de radio, les accumulateurs des automobiles demandaient souvent du courant continu qu'on n'obtenait pas avec un bon rendement à partir de courant alternatif tant qu'on ne disposait pas de diodes (à tubes puis à semi-conducteurs) pour faire des redresseurs, d'où la préférence accordée primitivement à la dynamo qui redresse le courant à la source par des commutations mécaniques. En revanche, la tension du courant continu ne peut pas être augmentée ou abaissée avec un transformateur, ce qui a disqualifié très facilement les machines produisant initialement du courant continu.

Ce sont souvent des dynamos qui servent à recharger les gadgets électriques à alimentation manuelle que l'écologie a remis à la mode : récepteurs de radio, lampes-torches et chargeurs de batterie de matériel portable. Dans ces appareils, une dynamo mue par une manivelle recharge un accumulateur ou un super-condensateur (moins sujet au vieillissement qu'un accumulateur).

 
Anneau de Pacinotti-Gramme avec la lettre B représentant les contacts de sortie du courant

Notes et références

Notes

  1. L'usure des "charbons", et du collecteur, de la dynamo historique nécessitait leur changement régulier sous peine de dégradation voire de destruction, du collecteur

Références

  1. Frédéric Sarrat, Contribution à l'étude générale des dynamos auto-excitatrices à courant continu, Paris, (BNF 31299615).

Annexes

Bibliographie

Articles connexes

 

Alternateur à commutation de flux

 
 
 

Un alternateur à commutation de flux est une forme d'alternateur à haute vitesse mis en rotation par les flux de gaz, d'un réacteur, qui entraine une turbine. Ce type d'alternateur est de conception simple, robuste et capable d'une vitesse de rotation élevée. Leur usage est notamment répandu dans les missiles.

 
Animation d'un alternateur avec un rotor à six pôles, les flèches indiquent le sens des flux magnétiques.

Principe

La rotation de la couronne dentée génère une variation du sens des flux magnétiques. Cette variation de flux génère une variation de tension, dans les bobines qu'il traverse. La fréquence de cette variation de tension est directement liée a la vitesse de rotation du rotor et au nombre de dents sur la couronnes1.

Du fait de la vitesse élevée obtenue par la mise en rotation, générée par la vitesse de la turbine, entraînant l'alternateur, mise en rotation par le flux de gaz du réacteur, peu de dents sont nécessaires au bon fonctionnement. La fréquence étant lié à la vitesse d'éjection des gaz elle varie dans le temps et atteint 0 tr/min lorsque le flux de gaz s’arrête. Si l'engin à besoin d'électricité après l'extinction du réacteur il faut prévoir un dispositif de stockage de l'énergie électrique.

Utilisation

Pouvant être utilisé dans tout engin, ayant besoin d’énergie électrique et générant un flux de fluide suffisamment puissant pour mettre en rotation la turbine. Utilisé essentiellement dans les missiles du fait du peu de composant, de l'absence d'entretien et de sa fiabilité mème aux températures élevées.

Avantages

Inconvénients

Notes et références

  1. Machine électrique à commutation de flux, et notamment alternateur de véhicule automobile [archive], Valeo Equipements Electriques Moteur SAS, consulté le 25 mai 2020

Annexes

Articles connexes

 

Batterie au plomb

 
 
 
Batterie au plomb
Image illustrative de l’article Batterie au plomb
Batterie d'automobile (12 V, 40 Ah)
Caractéristiques
Énergie/Poids 20-40 Wh/kg
Énergie/Volume 40-100 Wh/ℓ
Rendement charge-décharge 50–921 %
Auto-décharge 3–20 %/mois2
Durée de vie min. 4 à 5 ans3
Nombre de cycles de charge 500 à 1 200
Tension nominale par élément 2,1 V

Une batterie au plomb est un ensemble d'accumulateurs au plomb-acide sulfurique raccordés en série, afin d'obtenir la tension désirée, et réunis dans un même boîtier. Les plaques et grilles de plomb sont en réalité constituées de plomb durci (par exemple à l'aide d'étain, de cadmium et de strontium, à raison de quelques pour cent de l'alliage)4.

Ce système de « stockage » d'électricité est largement utilisé dans l'industrie, dans l'équipement des véhicules ferroviaires et automobiles (camions compris) mais aussi à chaque fois que l'on a besoin d'une énergie électrique immédiatement disponible (avion, satellite, etc.).

Historique

 
Vue en coupe d'une batterie de voiture avec ses 6 cellules reliées en série et ses plaques de plomb

L'accumulateur au plomb a été inventé en 1854 par Wilhelm Josef Sinsteden. En 1859, le Français Gaston Planté a amélioré significativement l'accumulateur au plomb. Il a été en effet le premier à avoir mis au point la batterie rechargeable. À l'origine, les accumulateurs étaient situés dans des cuves en verre. Par la suite, on a systématisé l'emploi des cuves en plastique, qui résistent mieux aux chocs.

De nos jours, les batteries sans entretien se généralisent : cosses traitées anti-sulfatage, plaques au plomb-calcium, supprimant le besoin de refaire le niveau de liquide, et donc permettant le scellement.

Les batteries constituent aujourd'hui la principale utilisation du plomb. Cette technique simple et robuste est également très compétitive et reste à ce jour la principale technique pour les batteries de démarrage des véhicules. Ainsi, en 2010, les batteries au plomb représentaient plus de 99 % en tonnage des batteries utilisées dans l’automobile5.

En 2011, des chercheurs de l’université d'Helsinki et d'Uppsala sont parvenus pour la première fois à reproduire correctement à partir des principes premiers de la physique la tension nominale de 2,1 V qu'on observe pour l'accumulateur au plomb. La chimie classique, à elle seule, ne permettrait pas d'expliquer cette valeur. Selon eux, il faut inclure les effets de la relativité d'Einstein dans le calcul pour arriver à la valeur observée6.

Caractéristiques techniques

 
Schéma en coupe d'une batterie au plomb. Chaque cellule contient un assemblage de plaques de plomb (électrode négative en mode décharge) avec des plaques d'oxyde de plomb (électrode positive en mode décharge)

Une batterie au plomb se caractérise essentiellement par :

Les valeurs maximales sont données par le constructeur pour une batterie neuve et chargée à 100 %, elles varient sensiblement en fonction de l'état de charge, se dégradent en fonction du temps ainsi que de l'usage qui est fait de la batterie.

Charge

La charge est une dismutation forcée, les réactions électrochimiques aux électrodes étant les suivantes :

Borne positive : anode (oxydation) : PbSO4 sol + 2 H2O liq PbO2 sol + HSO4aq + 3 H+aq + 2 e ;
Borne négative : cathode (réduction) : PbSO4 sol + H+aq + 2 e Pb sol + HSO4aq ;
La réaction globale peut ainsi être écrite : 2 PbSO4 sol + 2 H2O liq Pb sol + PbO2 sol + 2 HSO4aq + 2 H+aq.

Décharge

La décharge est une médiamutation spontanée, les réactions électrochimiques aux électrodes étant les suivantes :

Borne positive : cathode (réduction) : PbO2 sol + HSO4aq + 3 H+aq + 2 e PbSO4 sol + 2 H2O liq, E0
2
= + 1,685 V ;
Borne négative : anode (oxydation) : Pb sol + HSO4aq PbSO4 sol + H+aq + 2 e, E0
1
= – 0,356 V ;
La réaction globale peut ainsi être écrite : PbO2 sol + Pb sol + 2 HSO4aq + 2 H+aq ⟶ 2 PbSO4 sol + 2 H2O liq.

Performances

La batterie au plomb est celle qui a la plus faible énergie massique, 35 Wh/kg, après la batterie nickel-fer. Mais comme elle est capable de fournir un courant crête de grande intensité, utile pour le démarrage électrique des moteurs à combustion interne, elle est encore très utilisée en particulier dans les véhicules automobiles et dans la plupart des véhicules ferroviaires. Elle présente aussi l'avantage de ne pas être sensible à l'effet mémoire.

Utilisation

Cette batterie sert à alimenter les composants électriques des véhicules à moteur à combustion interne, particulièrement le démarreur électrique. Lorsque le moteur fonctionne, elle est rechargée par une dynamo ou un alternateur.

Historiquement, les batteries de voitures ou de motocyclettes faisaient le plus souvent 6 V (trois éléments). Depuis les années 1980, les batteries de 12 V (six éléments) sont généralisées sur les voitures et motocyclettes, alors que les véhicules lourds ou militaires utilisent le 24 V et finalement, les engins ferroviaires utilisent des groupes variant de 36 V en Suisse (deux batteries de 18 V en série), 72 V en France à 110 V dans la plupart des autres pays européens.

Remarque : en 2012, les voitures électriques (autonomie d'environ 60 à 500 km8) sont moins nombreuses que les voitures à moteur thermique (autonomie d'environ 600 à 2 500 km9).

Les batteries au plomb servent à alimenter toutes sortes de machines électriques, les équipements de sécurité et de mise en service ainsi que les éclairages de secours dans la plupart des trains. Elles sont principalement montées en groupes de six batteries de 12 V pour produire 72 V et sont redondantes en cas de panne d'un des deux groupes.

Elles sont souvent utilisées dans des alarmes anti-intrusion, alarmes incendie ou éclairages de sécurité par phares (ou projeteurs) dans les grands bâtiments (usines, salles de sport). En général, elles peuvent être utilisées dans tout système qui a besoin d'une source d'alimentation de secours ayant besoin d'une bonne autonomie (12 à 48 heures) et où le poids du plomb n'a pas d'importance. Pour ces usages, ce sont des batteries au « gel-plomb ». Elles présentent une différence par rapport aux batteries au plomb classiques (pour automobiles) : l'acide est contenu dans un gel de silice, ce qui permet d'utiliser la batterie dans toutes les positions (la matière ne coule pas). Elles sont bien adaptées à une utilisation en intérieur (pas ou très peu de dégagements de gaz) et pour des décharges lentes (faible intensité) et profondes, contrairement aux batteries à acide liquide qui sont prévues pour de fortes intensités et décharges partielles. Sur un véhicule, une fois le moteur démarré, la batterie est mise en charge aussitôt par l'alternateur.

Ces batteries peuvent aussi servir à stocker de l'énergie produite par intermittence, comme l'énergie solaire ou éolienne.

Charge de la batterie

On charge une batterie au plomb en lui appliquant un courant continu d'une valeur quelconque (sous réserve de limites technologiques liées à la batterie elle-même ou à ses connexions), pourvu qu'elle n'entraîne pas aux bornes de la batterie l'apparition d'une tension supérieure à 2,35 V par élément (valeur à 25 °C)[réf. nécessaire].

 
Chargeur de batteries auto. L'intensité diminue lorsque la recharge se termine

L'application de cette règle conduit à constater dans la pratique deux phases de charge successives :

  1. La phase dite « CC » (Constant Current ou Courant Constant) au cours de laquelle la tension par élément est inférieure à 2,35 V malgré l'application du courant maximum dont est capable le chargeur : le courant est déterminé par le chargeur, et la tension par la batterie. La tension aux bornes de chaque élément augmente au fur et à mesure que la batterie se recharge ;
  2. La phase dite « CV » (Constant Voltage ou « TC » Tension Constante), dite aussi « phase d'absorption » commence dès que la tension par élément atteint la valeur de 2,35 V par élément puisque l'application de la consigne ci-dessus conduit le chargeur (son système asservi le transformant en un générateur de tension) à ajuster le courant de telle sorte que la tension reste égale à 2,35 V par élément alors que la batterie continue d'être chargée. Le courant au cours de cette phase est donc une fonction décroissante du temps. Il tend théoriquement vers 0 asymptotiquement.

En fin de charge, le courant en phase CV ne s'annule pas. Il se stabilise à une valeur faible mais non nulle qui n'accroît plus l'état de charge mais électrolyse l'eau de l'électrolyte. On préconise donc d'interrompre la charge, ou, si l'on veut appliquer une charge permanente (dite d'entretien ou de « floating », afin de compenser le phénomène d'auto-décharge), de baisser la tension de consigne à une valeur de l'ordre de 2,3 V par élément.

La charge CC/CV s'est généralisée car elle seule permet de charger à fort courant (donc rapidement) sans endommager la batterie. Ce mode de charge est utilisé dans toutes les automobiles : en phase CC, le courant de charge dépend essentiellement de la vitesse de rotation de l'alternateur (et donc du moteur). En phase CV, la tension de consigne est maintenue par l'asservissement que constitue le régulateur de tension. Celui-ci diminue en effet le courant d'excitation de l'alternateur, de façon que le courant de sortie de l'alternateur n'ait jamais pour résultat une tension supérieure à 2,35 V par élément (avec une légère correction en fonction de la température).

Lorsque, dans le cas de chargeurs bon marché, on ne dispose pas d'un chargeur capable de limiter sa tension à la valeur de consigne correspondant à 2,35 V par élément, on recommande de limiter la valeur du courant de charge (en ampères) à, par exemple, 10 % de la valeur de la capacité de la batterie (en ampères-heure), afin de minimiser les conséquences dommageables du dépassement de tension qui risque de se produire en fin de charge (ainsi que les conséquences néfastes pour la durée de vie des électrodes).

La tension de 2,34 V par élément est appelée « Vgaz ». Elle correspond à la tension à laquelle l'électrolyte sous forme liquide, s'électrolyse (2 H2 + O2).

Une batterie ne doit jamais être déchargée à moins de 20 % de sa capacité nominale. La tension n'est pas une référence fiable dans le temps, puisque plus la batterie est âgée, plus la tension a tendance à baisser.

Décharge de la batterie

Selon la loi de Peukert, plus on décharge vite une batterie, moins sa capacité est importante.

Dégradation

Les principales causes de dégradation des batteries sont :

Sulfatation

La sulfatation représente l'accumulation de sulfate de plomb sur les électrodes. Ce phénomène apparait naturellement à chaque décharge de la batterie, et disparait lors d'une recharge. Cependant sous certaines conditions (décharge prolongée ou trop profonde, température importante, gazéification de l'électrolyte), des ilots stables de sulfate de plomb apparaissent et ne sont plus dissous lors de la charge. Le sulfate de plomb ainsi généré diminue la capacité de la batterie en empêchant les réactions sur l'électrode par sa faible conductivité électrique10. Le processus de sulfatation est interrompu dès que la batterie est remise en charge.

Exemple : une batterie sulfatée de 1 000 CCA (courant de crête) à l'état neuf, mais contrôlée à 12 V et avec une puissance de 500 CCA, reprendra après recharge une tension supérieure ou égale à 12,6 V mais la puissance mesurée de 500 CCA évoluera peu. Une batterie dans cet état ne permettra pas plusieurs démarrages consécutifs d'un véhicule automobile et pourra provoquer, par exemple, une panne immobilisante dès les premiers froids.

Désulfatation

Il existe un moyen d'inverser le processus de sulfatation d'une batterie. Cela consiste en l'envoi d'impulsions électriques à la fréquence de résonance de la batterie (entre 2 et 6 MHz). Durant ce processus, les ions soufrés entrent en collision avec les plaques, ce qui a pour effet de dissoudre le sulfate de plomb qui les recouvre11,12.

Décharge complète

Pour un véhicule automobile, la décharge complète de la batterie intervient généralement lors d'une faible consommation pendant une durée prolongée (ex. : plafonniers), lors d'une utilisation fréquente d'un véhicule pour de petits trajets (qui ne laisse pas le temps à la batterie pour être pleinement rechargée), lorsque l'alternateur ou tout autre partie du système électrique est endommagé ou par une consommation importante (ex. : feux de croisement, ventilation) avec le moteur à l'arrêt13,7. La tension est alors très faible aux bornes de la batterie, inférieure à 10 V pour une batterie dont la tension nominale est de 12 V.

L'état de la batterie d'une voiture peut être contrôlé avec un multimètre/voltmètre afin de vérifier la tension de la batterie au repos (température extérieure au-dessus de 10 °C) :

Pour les véhicules garés qui ne sont pas utilisés pendant de longues périodes, une règle général donne une décharge des batteries plomb-acide de l'ordre de 5 % par mois (auto-décharge). Cette règle vaut à une température de 25 °C et la décharge est plus rapide par temps froid13.

La batterie a besoin d'être rechargée régulièrement pour ne pas être abimée par une décharge complète et pour rester capable de faire démarrer le moteur, en roulant durant une trentaine de minutes s'avère suffisant ou avec un chargeur7.

Effet de la température sur la batterie

Le CCA de la batterie, le courant de crête, qui est donc la capacité de démarrage à froid, diminue avec la température. En période hivernale, la batterie du véhicule perd près de 33% de sa puissance dès que la température descend en dessous de °C et plus de 50 % en dessous de −18 °C13.

C'est pourquoi une batterie sulfatée qui a déjà perdu une partie de son CCA initial, donnera des signes de faiblesse en hiver.

La puissance nécessaire pour la batterie dépend du type de moteur du véhicule : plus il est lourd et performant, plus il faudra de puissance au démarreur pour démarrer le moteur6,13.

Chargeurs d'entretien

Des « chargeurs d'entretien de batteries » sont utiles, par exemple quand le moteur du véhicule fonctionne une fois par mois.

La plupart des batteries neuves ne sont que partiellement chargées. Une batterie neuve, qui n'est pas rechargée au préalable avec un chargeur adapté, peut subir une décharge complète si le véhicule n'est pas utilisé pour recharger la batterie (avec un nombre suffisant de kilomètres). Par exemple :

Les batteries en état de décharge complète doivent être rechargées dans un délai maximum de 48 heures[réf. souhaitée] : au-delà, les dommages sont irréversibles. Une désulfatation (assurée par certains modèles de chargeurs d'entretien) peut prolonger la durée de vie d'une batterie non complètement déchargée.

Cyclage

Les constructeurs de batteries indiquent leur durée de vie sous la forme d'un nombre de cycles normalisés de décharge/recharge. À l'issue d'un certain temps de fonctionnement dépendant du nombre et de l'amplitude des cycles, la batterie est usée : l'électrolyte présente un aspect noirâtre. Exemple : l'utilisation répétée du hayon élévateur motorisé d'un camion quand son moteur est à l'arrêt accélère l'usure de la batterie du véhicule par cyclage.

Oxydation des électrodes

L'oxydation est une cause de dysfonctionnement des batteries. Lorsque le niveau d'électrolyte est trop bas, les plaques entrent au contact de l'air et s'oxydent. La puissance au démarrage est amputée, même si le niveau d'électrolyte est complété. Le manque d'électrolyte peut venir d'une utilisation intensive (exemple : équipements auxiliaires), d'une température extérieure importante (supérieure ou égale à 30 °C) ou d'une tension de charge trop élevée.

Oxydation des bornes

Il arrive qu'une batterie dont les cosses sont peu ou pas serrées voit ses bornes s'oxyder, ce qui empêche le courant de passer.

Une méthode pour y palier est de recouvrir les bornes d'une couche de graisse cuivrée14,15.

Régénération

Les batteries plomb ouvert (chariots élévateurs, nacelles, etc.) ont une durée de vie limitée à environ 1 500 cycles. Lors du stockage et de la restitution de l'énergie au cours de cycles d'utilisation normaux, des cristaux de sulfate s'accumulent graduellement sur les électrodes, empêchant la batterie de fournir efficacement du courant. Les cristaux « étouffent » en fait la batterie. Même une charge de désulfatation n'empêche pas toujours que l'on doive remplacer la batterie après quelques années.

Pour restaurer la capacité perdue d’une batterie plomb/acide, il faut forcer la dissolution de ces amas de cristaux de sulfate de plomb, qui ne se produit plus au cours du cycle de charge classique. On parle alors de régénération de la batterie, qui peut se faire via un procédé utilisant des impulsions électriques de fortes puissances, à une fréquence donnée (typiquement quelques centaines de hertz). L’énergie de ces impulsions électriques est transmise aux électrodes. Les cristaux de PbSO4, qui ont une résistance plus élevée que la matière active (Pb / PbO2), vont entrer en résonance sous l’effet des impulsions. Le choc électrique se transforme en choc mécanique, ce qui amorce et facilite la dissolution des cristaux de sulfate de plomb dans l’électrolyte. Ainsi, la surface active des électrodes est récupérée, et la capacité de la batterie augmente significativement. Les batteries ainsi traitées, recouvrent des fonctions d'emmagasinage et de conductivité électrique proches de celles d'une batterie neuve. Ce procédé est valable sur des batteries au plomb de type démarrage, stationnaire ou de traction.

Selon des estimations récentes, environ 80 % des batteries au plomb hors d'usage peuvent être régénérées. Il est cependant impossible de restaurer la plaque positive après quatre ou cinq ans d'utilisation normale d'une batterie. En conséquence une batterie de quelques mois peut effectivement être régénérée et l'on peut atteindre le taux de 80 % de remise en état de fonctionner, plus sa durée d'utilisation augmente dans le temps et moins cela est possible (la dégradation naturelle, due à la montée en température de la batterie, est inévitable). Ce procédé s’avère efficace, et plusieurs régénérateurs de batteries sont utilisés dans le commerce. A titre d’exemple, une batterie plomb/acide perd environ 50% de sa capacité au bout de 5 ans d’utilisation. Bien que d’autres problèmes puissent être la cause de ce vieillissement (corrosion des électrodes, court-circuit interne…), la raison principale de cette perte de capacité est très souvent la sulfatation dure. Après régénération, la capacité atteint des valeurs allant de 90% à 100% de la capacité nominale de la batterie16.

Recyclage

 
Stock de plaque d'alliage de plomb-Antimoine-Arsenic issues de batteries dites "Acide-plomb" démontées en vue du recyclage de ces métaux (tous trois toxiques et écotoxiques).

En 2001, selon un rapport sénatorial sur les métaux lourds, chaque année, environ 7,5 millions de batteries automobiles étaient remplacées ou abandonnées, éventuellement dans la nature (soit 75 000 tonnes de plomb).

Le recyclage des batteries au plomb est rendu complexe par la présence de matériaux très différents (plomb métallique, pâte de plomb, solution d’acide sulfurique, polypropylène) et par la dangerosité de certains de ces composants. Ce recyclage s’effectue le plus souvent en quatre étapes :

Le plomb affiné est ensuite vendu sous la forme de lingots ou de blocs. Une fois lavé, le polypropylène broyé est vendu à des recycleurs de matières plastiques. Le recyclage du plomb ainsi obtenu permet ensuite d’alimenter de nouveau les usines de fabrication de batteries. On estime d’ailleurs au niveau mondial qu’en 2011, 55 % de la production de plomb affiné est issue de plomb recyclé17.

La capacité de traitement des usines françaises spécialisées dans cette activité est en adéquation avec le gisement de batteries usagées collectées chaque année en France. Le taux de collecte de la filière est d’ailleurs régulièrement supérieur à 100 % comme le révèle le rapport annuel18 de l’ADEME. En outre, les performances de cette filière de recyclage répondent bien au minimum de recyclage de 65 % en poids qui est fixé réglementairement19. Les entreprises françaises spécialisées dans le recyclage des batteries au plomb sont également strictement encadrées par la législation et font l’objet de contrôles réguliers de la part des directions régionales de l'environnement, de l'aménagement et du logement (DREAL). Selon un récent rapport du Blacksmith Institue l'industrie du recyclage des batteries au plomb est l'industrie la plus polluante par sa toxicité. À titre d'exemple, la pollution au plomb par l'entreprise Exide, aux Etats-Unis a coûté des centaines de millions de dollars, rien que pour la dépollution des sols et des maisons de dizaines de milliers d'habitants vivant autour des usines recyclant les batteries.

Aspects environnementaux et santé humaine

S’il est ingéré ou respiré, le plomb peut être la cause d’intoxications aigües ou chroniques. Il peut être à l’origine de cas de saturnisme. Une bonne maîtrise des risques présentés par les batteries au plomb usagées est donc indispensable et, parce qu’il s’agit d’un déchet dangereux pour la santé et pour l’environnement, ces batteries doivent être collectées et retraitées par des sociétés spécialisées. Afin de prévenir les risques de pollution, les entreprises françaises ont l’obligation de mettre en place des procédés conformes aux meilleures techniques disponibles20 et font l’objet de contrôles stricts et réguliers[réf. nécessaire]. Elles doivent également garantir un niveau élevé de protection de leurs salariés. Cette protection passe par la formation aux risques liés au plomb et par l’utilisation systématique d’équipements de protection collective et individuelle. L’efficacité de ces mesures est régulièrement vérifiée par la mesure de la plombémie des salariés.

Un démantèlement réalisé dans de mauvaises conditions peut engendrer des décès et une pollution durable. C’est ce qu’a mis en évidence l’Organisation mondiale de la santé dans un quartier de Thiaroye-sur-mer (Sénégal) où une activité clandestine de recyclage s’était mise en place pour alimenter un marché parallèle de batteries21. Dans ce quartier, des analyses ont révélé des taux de plomb allant jusqu’à 1 000 µg/l de sang chez certaines personnes, alors que des concentrations supérieures à 100 µg/l peuvent altérer le développement neurologique chez l’enfant.

Notes et références

  1. Saturnisme au Sénégal [archive], 23 juin 2008, sur who.int (consulté le 23 octobre 2012)

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes

Batterie d'accumulateurs

 
 
 

Une batterie d'accumulateurs, ou plus communément une batterie1, est un ensemble d'accumulateurs électriques reliés entre eux de façon à créer un générateur électrique de tension et de capacité désirée. Ces accumulateurs sont parfois appelés éléments de la batterie ou cellules2.

On appelle aussi batteries les accumulateurs rechargeables destinés aux appareils électriques et électroniques domestiques.

La batterie d'accumulateurs permet de stocker l'énergie électrique sous forme chimique et de la restituer sous forme de courant continu, de manière contrôlée.

 
Batterie d'accumulateurs d'un mini-aspirateur domestique (2018).

Vocabulaire

En France, dans le langage commun, le mot « batterie » désigne souvent un ensemble d'accumulateurs électriques3 bien que ce ne soit que l'un des multiples sens de ce mot1.

L'expression anglaise battery pack se traduit en français littéralement par « ensemble d'accumulateurs » ou « batterie d'accumulateurs ». La traduction littérale « pack de batterie » ou encore « pack batterie » est un anglicisme et un pléonasme.

Types d'accumulateurs

 
Densité d'énergie de quelques accumulateurs.

Les batteries d'accumulateurs nécessaires aux voitures électriques mais également aux voitures hybrides ont suivi une évolution technologique continue et les progrès sont importants. Toutefois, aucune technologie n'est entièrement satisfaisante et chaque type d'accumulateur d'électricité est souvent réservé à un type d'usage. Certaines de ces batteries ont un usage commun avec d'autres secteurs comme l'éolien ou le solaire, dans lequel elles stockent l’énergie produite de façon intermittente et la distribuent en période de forte demande.

 
Batterie d'accumulateurs expérimentale 50 Ah / 30 V pour véhicule spatial.

Les recherches et découvertes en cours sont très prometteuses, au point que certains fabricants de batteries promettaient une autonomie des voitures électriques de 800 km pour la décennie, grâce à la batterie lithium air4. Néanmoins, en 2016, peu de voitures électriques peuvent dépasser 400 km sans recharge en usage standard.

Configuration

Choix de configuration

 
Vue en coupe d'une batterie d'accumulateurs de voiture, avec ses six cellules en série et ses plaques de plomb, pour une batterie de 12 V.

Les accumulateurs sont souvent câblés en série afin d'obtenir la tension de batterie souhaitée.

Pour augmenter le courant disponible, il est également possible de recourir à un montage en parallèle des cellules.

Le propre de la batterie d'accumulateurs est donc d'augmenter la tension et/ou le courant disponible afin de correspondre aux caractéristiques d'une alimentation donnée.

La combinaison des deux techniques peut être faite en accouplant plusieurs éléments :

Notation série et parallèle

Afin de simplifier les descriptions de montage des batteries d'accumulateurs, une notation usuelle est employée pour designer le couplage de[réf. souhaitée] :

Utilisations

 
Véhicule électrique équipé de batteries lithium-ion.

Les batteries d'accumulateurs sont utilisées dans de nombreux domaines :

Géographie de la production

Selon Bloomberg New Energy Finance, la Chine dispose en 2019 d'une capacité de production de 217,2 GWh, devant les États-Unis (49,5 GWh) et la Corée (23,1 GWh). La France se situe à la huitième position (1,1 GWh) grâce aux usines de Saft et Forsee Power8.

Airbus européen de la batterie

En 2019, la Commission européenne a octroyé une subvention publique de 3,2 milliards d'euros en soutien à la création d'un projet européen d'entreprise de batteries. L'objectif est de créer un « Airbus des batteries » tout en se focalisant sur le développement de batterie Li-ion avec une durée de vie augmentée et un impact environnemental atténué9.

Charge des batteries

Indicateurs de charge

La mise en charge des batteries est une opération primordiale pour que les batteries conservent leurs caractéristiques initiales10. On peut évaluer dans certains cas le niveau de charge d'une batterie en mesurant sa tension à vide (sans charge).

Dans le cas de techniques plus récentes, comme le NiMh ou le Lithium, des méthodes plus élaborées sont nécessaires pour vérifier le niveau de charge, ce qui nécessite l'utilisation de chargeurs adaptés. Pour ces techniques, les chargeurs évaluent le taux de charge en surveillant l'évolution de la tension de charge et en prenant en compte le courant de charge et le temps, ( d v d t ou d v 2 d t 2 ).

Pour une batterie au plomb de tension nominale 12 V :

Pour une batterie lithium-polymère, chaque cellule a une tension nominale de 3,7 V :

Quand une batterie lithium-polymère est composée de plusieurs cellules (cas fréquent), et il est recommandé de ne pas avoir un écart de tension entre les cellules qui dépasse 0,5 V.

Temps de charge, rendement et capacité

 
Chargeur de batterie auto, avec indication du courant de charge.

Par exemple, DT = 0,01053 T + 0,73671 pour des batteries plombs. (DT > 1 si T > 25 °C ; DT < 1 si T < 25 °C). De même, Dch = 20/30 par exemple si le courant nominal de charge est de 20 A alors que le courant de décharge maximum est de 30 A (cas des charges rapides).

Régénération

Les batteries plomb ouvert (chariots élévateurs, nacelles, etc.) ont une durée de vie limitée à environ 1 500 cycles11. Lors du stockage et de la restitution de l'énergie au cours de cycles d'utilisation normaux, des cristaux de sulfate s'accumulent graduellement sur les électrodes, empêchant la batterie de fournir efficacement du courant. Les cristaux « étouffent » en fait la batterie. Même une charge de désulfatation n'empêche pas toujours que l'on doive remplacer la batterie après quelques années.

La sulfatation est une des causes de vieillissement d'une batterie au plomb qui est restée déchargée pendant un certain temps avant la recharge, mais il y a aussi un autre facteur de vieillissement qui est la transformation au cours des cycles de charge/décharge de la matière active de l'électrode positive. Celle-ci est constituée de dioxyde de plomb PbO2 qui cristallise sous deux formes différentes (α-PbO2 et β-PbO2) dont une forme est constituée de petits cristaux, elle se transforme au cours des cycles en l'autre forme dont les cristaux sont plus gros, ce qui génère un gonflement de l'électrode qui se désagrège.

Impact carbone

L’Institut suédois de recherche environnementale (IVL) publie en 2017 un rapport sur l'impact environnemental des batteries : elle estime que leur production engendre de 150 à 200 kg de CO2 par kilowatt-heure de capacitéd ; une batterie de 30 kWh engendrerait donc entre 4,5 et 6 tonnes de CO2 tandis qu’une batterie de 100 kWh comme celle qui équipe la Tesla Model S P100D correspondrait à la production de plus de 17 tonnes de CO2. L'IVL souligne cependant la forte disparité des mix énergétiques selon les pays : 162 kWh d’électricité étant nécessaires par kWh de batterie fabriquée, celle-ci peut représenter jusqu'à 70 % du CO2 émis lors de la production ; avec un mix électrique entièrement décarboné comme en Suède, cet impact carbone serait réduit de 60 %. Malgré cela, la recherche d'une autonomie maximale avec des batteries de grande capacité contribuerait significativement au réchauffement climatique12,13.

Recyclage

 
Matériaux de recyclage de batteries.

Batteries au plomb

Les batteries au plomb peuvent être recyclées : la plupart de leurs composants peuvent être réutilisés en fin de vie, par exemple le plastique, l'acide et les plaques de plomb. Au sein de l'usine de recyclage, le plastique du boîtier sera ainsi séparé du plomb des plaques et de l'acide de l'électrolyte. Ensuite, le plomb est fondu dans un four et réutilisé pour fabriquer de nouvelles plaques.

Le plastique de son côté est également fondu et sert à confectionner de nouveaux boîtiers. Enfin, l’acide sulfurique est contrôlé, car il causerait de graves dommages s’il se retrouvait dans l’atmosphère. Il va servir lui aussi ultérieurement lors de la fabrication de batteries neuves.

Ainsi, tout est recyclé et les pertes dans l’environnement sont très faibles, à condition qu'elles soient déposées dans des endroits prévus à cet effet : les mairies, décharges, magasins spécialisés dans l'automobile ou le matériel industriel, ou certains ferrailleurs (contre rémunération) peuvent s'en charger. Au Québec, les écocentres (centres municipaux de recyclage) offrent généralement ce service gratuitement14.

Batteries lithium-ion

Pour les batteries lithium-ion, en 2019 certaines entreprises comme la SNAM sont capables de recycler « plus de 70 % » des batteries. Les 20 % à 30 % restants « sont détruits, brûlés et à la fin il reste 2 % qui sont enfouis »15.

Standardisation

Certaines parties prenantes chinoises souhaitent standardiser les batteries dans le but d'en faciliter l'échange standard16.

Notes et références

Notes

  1. La quantité d'électricité contenue dans une batterie se mesure en kilowatt-heure (kWh).

Références

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Accumulateur lithium-ion

 
 
 
 
Une batterie d'accumulateurs lithium-ion Varta au Museum Autovision au Bade-Wurtemberg (Allemagne).
 
Une batterie de petite taille pour appareil portable.

Une batterie lithium-ion, ou accumulateur lithium-ion, est un type d'accumulateur lithium.

Ses principaux avantages sont une énergie massique élevée (deux à cinq fois plus que le nickel-hydrure métallique par exemple) ainsi que l'absence d'effet mémoire. Enfin, l'auto-décharge est relativement faible par rapport à d'autres accumulateurs. Cependant, le coût reste important et a longtemps cantonné le lithium aux systèmes de petite taille1.

Historique

Commercialisée pour la première fois par Sony Energitech en 1991, la batterie lithium-ion occupe aujourd'hui une place prédominante sur le marché de l'électronique portable2.

Le prix Nobel de chimie 2019 a été attribué aux innovateurs de la batterie lithium-ion : l’Anglais Stanley Whittingham, l’Américain John B. Goodenough et le Japonais Akira Yoshino. Stanley Whittingham est à l’origine de la toute première batterie li-ion, conçue dans les années 1970 avec le soutien financier du groupe pétrolier Exxon, inquiété par la crise pétrolière, qui finit par interrompre ses subventions au sortir de cette crise. John Goodenough modifie le prototype de Stanley Whittingham en remplaçant les électrodes en sulfure de tantale par de l’oxyde de cobalt, rendant la batterie au lithium plus efficace et permettant d'envisager une commercialisation. En 1986, le Japonais Akira Yoshino la perfectionne en abandonnant le lithium pur dans l’anode, le mélangeant avec du coke de pétrole, ce qui permet à la fois d’alléger la batterie, de gagner en stabilité et en longévité3.

Principe de fonctionnement

Aspect microscopique

La batterie lithium-ion est basée sur l'échange réversible de l'ion lithium entre une électrode positive, le plus souvent un oxyde de métal de transition lithié (dioxyde de cobalt ou manganèse) et une électrode négative en graphite (sphère MCMB)4. L'emploi d'un électrolyte aprotique (un sel LiPF6 dissous dans un mélange de carbonate d'éthylène, de carbonate de propylène ou de tétrahydrofurane) est obligatoire pour éviter de dégrader les électrodes très réactives.

La tension nominale d’un élément Li-ion est de 3,6 ou 3,7 V selon la technologie.

Cette équivalence : 1 élément Li-ion = 3 éléments Ni-MH est intéressante car elle permet parfois une substitution (du Li-ion par du Ni-MH uniquement, l'inverse pouvant s'avérer catastrophique). Le Ni-MH est d'une utilisation plus sûre, notamment lors de la charge.

Les problèmes de sécurité imposent d'intégrer un système électronique de protection embarqué (BMS), qui empêche une charge ou décharge trop profonde et permet l'équilibrage des tensions entre éléments dans les batteries constituées de plusieurs éléments en série ; à défaut, le danger peut aller jusqu'à l'explosion de la batterie. Les courants de charge et de décharge admissibles sont aussi plus faibles qu'avec d'autres technologies.

Cependant, certains accumulateurs Li-ion industriels de grande puissance (plusieurs centaines de watts par élément) durent jusqu'à quinze ans, grâce à une chimie améliorée et une gestion électronique optimisée. Ils sont utilisés en aéronautique, dans les véhicules hybrides et électriques, les systèmes de secours, les navires… EDF Énergies nouvelles a mis en service un ensemble de batterie Li-Ion de 20 MWh à McHenry (Illinois), destiné à réguler le réseau haute tension pour le compte de l'opérateur PJM Interconnection (en)5. Les sondes spatiales Galileo par exemple sont équipées de batteries Li-ion prévues pour douze ans6. L'utilisation de la technique Li-ion à ces échelles de puissance n'en était qu'à ses débuts dans les années 2000.

Aspect microscopique : électrochimie

Les réactions électrochimiques permettant le fonctionnement d'un accumulateur forcent le déplacement d'ions lithium d'une électrode vers l'autre. En phase de décharge, l'ion Li+ est libéré par une matrice de graphite pour laquelle il a peu d'affinité et se déplace vers un oxyde de cobalt avec lequel il a une grande affinité. Lors de la charge, l'ion Li+ est relâché par l'oxyde de cobalt et va s'insérer dans la phase graphitiquea.

Lors de la décharge de l'accumulateur, cela se traduit par les équations chimiques suivantes :

À l'électrode (+) :

L i 1 − x C o O 2 + x L i + + x e − ⇆ L i C o O 2

À l'électrode (-) :

x L i C 6 ⇆ x L i + + x e − + x C 6

Lors de la charge, les équations sont à considérer dans l'autre sens. Le processus de décharge est limité par la sursaturation de l'oxyde de cobalt et la production d'oxyde de lithium Li2O qui n'est plus susceptible de restituer l'ion Li+.

L i + + e − + L i C o O 2 → L i 2 O + C o O

Une surcharge de 5,2 V conduit à la synthèse d'oxyde de cobalt(IV) CoO2.

L i C o O 2 → L i + + C o O 2 + e −

Au sein de l'accumulateur lithium-ion, les ions Li+ font donc la navette entre les deux électrodes à chaque cycle de charge/décharge mais la réversibilité n'est possible que pour x < 0,5.

La capacité d'un tel accumulateur est égale à la charge globale des ions transportés multipliée par la tension d'utilisation. Chaque gramme d'ions lithium déplacé d'une électrode vers l'autre transporte une charge égale à la constante de Faraday/6,941 soit 13 901 C. Pour une tension de 3 V, cela correspond à 41,7 kJ/g de lithium donneur d’électron, soit 11,6 kWh/kg. Le lithium seul ne serait toutefois pas capable de générer la décharge électrique, le système fonctionnant seulement en présence d'un anion (CoO2- dans l'application industrielle). Si on considère que la masse de l'anion Oxyde de Cobalt est 13 fois la masse du cation, un accumulateur en LiCoO2 fonctionnel pourrait théoriquement accumuler 0,83 kWh/kg d’énergie électrique, sans considérer la masse des autres composantes nécessaires à son fonctionnement qui réduit la capacité énergétique de l'accumulateur.

Avantages et inconvénients de l'accumulateur lithium-ion

 

Avantages

Inconvénients

Risques liés à la surchauffe d'élément

Plusieurs constructeurs comme Nokia et Fujitsu-Siemens ont lancé un programme d'échange de batteries à la suite de problèmes de surchauffe sur certaines batteries qu'ils avaient vendues10,11,12.

En 2016, le constructeur de produits mobile Samsung a dû retirer son Galaxy Note 7 à la suite de plusieurs cas d'incendies et d'explosions13.

Charge et décharge

La charge se passe généralement en deux phases, une première phase à courant limité de l'ordre de C/2 à 1 C (C étant la capacité de l'accumulateur). Cette phase permet une charge rapide jusqu'à environ 80 %, puis une deuxième phase à tension constante et courant décroissant pour se rapprocher des 100 % de charge en environ deux heures de plus. La charge est terminée lorsque le courant de charge chute en dessous d'une valeur appelée courant de fin de charge.

La tension de fin de charge des accumulateurs Li-ion peut être de 4,1 à 4,2 V suivant la spécification du fabricant de l'accumulateur. La tolérance couramment admise est de ± 0,05 V par élément, ils sont très sensibles à la surcharge et demandent une protection lorsqu'ils sont connectés en série. Les chargeurs doivent être de bonne qualité pour respecter cette tolérance. Il importe de toujours respecter la feuille de données fournie par le fabricant, qui fait état des conditions de charge de l'accumulateur (tolérance, courant de charge, courant de fin de charge, etc.). Toutefois, certains éléments destinés au grand public possèdent une électronique interne qui les protège des mauvaises manipulations (surcharge, décharge profonde). En effet, la décharge doit être limitée à une tension de 3 V par élément, une tension de décharge inférieure à 2,5 V peut conduire à une destruction de l'élément.

Les accumulateurs Li-ion ne doivent pas être confondus avec les piles au Lithium qui ne sont pas rechargeables. La confusion est entretenue par le terme anglais Battery qui désigne aussi bien une pile électriqueb (primary battery ou primary cell en anglais14,15) qu'un accumulateur (secondary battery ou secondary cell en anglais14,16), alors qu'en français le terme batterie est utilisé pour désigner généralement une « batterie d'accumulateurs électriques ».

Le taux d'auto-décharge des batteries lithium-ion est faible : moins de 10 %/an17, contrairement à certains types de batteries qui se déchargent même à l'arrêt : c'est le cas de la batterie lithium/métal/polymère (LMP) de Bolloré, qui a été un fiasco car elle doit être maintenue à une température de 60 °C, ce qui impose de la recharger en permanence lorsqu’elle n’est pas en circulation, sans quoi elle se décharge18.

La perte de capacité des batteries est très variable selon les modèles, le climat et le mode de recharge. En moyenne, selon une étude menée en 2019 sur 6 300 véhicules électriques, cette perte est de 2,3 % par an. Les charges rapides accélèrent fortement cette perte : sans charge rapide, une batterie perd moins de 2 % en cinq ans, contre plus de 10 % avec des charges rapides régulières19.

Amélioration de la durée de vie, conditions requises

Si l'on respecte rigoureusement les conditions de charge et décharge, ces accumulateurs peuvent durer 5 à 6 ans pour des produits « grand-public » (vélos électriques, smartphones, appareils photos) et plus d'une dizaine d'années pour des produits industriels.

Respecter les particularités électriques

Avec un chargeur adapté de qualité et un système de gestion de batterie (BMS), ces impératifs sont normalement respectés.

Respecter quelques consignes d'utilisation20

Éviter l'échauffement de l'accumulateur :

Les accumulateurs s'usent même sans servir (à l'achat, vérifier la date de fabrication).

En respectant ces conditions, l'accumulateur pourra continuer à fonctionner, tout en sachant néanmoins que sa capacité (en Ah) diminuera d'année en année.

La fin de vie intervient quand, lors de la décharge, le BMS détecte une tension inférieure au seuil de coupure, même sur un seul élément, et coupe l'alimentation. Il peut rester 10 à 20 % de capacité dans l’accumulateur, mais on ne peut plus l'utiliser. La fin de vie peut aussi advenir parce qu'on a épuisé le nombre de cycles charge-décharge du produit, mais cela devient rare, le nombre de cycles possibles ayant augmenté (environ de 500 à 1 000).

Un appareil équipé d'une batterie au lithium-ion fournit moins d'énergie lorsque les températures sont négatives. Il est conseillé de garder son smartphone, sa tablette ou tout autre appareil électronique équipé d'une batterie au lithium-ion dans un endroit à la température comprise entre °C et 35 °C, avec une zone de confort entre 16 °C et 22 °C. Lorsque les températures chutent, les réactions chimiques qui produisent de l'énergie sont moins actives. De ce fait, l'énergie fournie est moindre. Les performances de la batterie reviennent toutefois à la normale, lorsque les températures remontent24.

Production

En 2013, les industriels japonais représentaient 70 % du marché mondial des batteries destinées au marché automobile ; leur part de marché est tombée à 41 % en 2016, alors que celle de la Chine est passée de 3 à 26 %25.

En 2020, près de 140 GWh de batteries ont été affectés à la fabrication de véhicules électriques et hybrides. Les six principaux fabricants de ces batteries totalisent environ 90 % du marché ; trois sont coréens : LG Energy Solutions, en tête avec une capacité de 40 GWh, Samsung SDI et SK Innovation ; deux sont chinois : CATL, au 2e rang mondial avec une capacité de 30 GWh, et BYD ; un est japonais : Panasonic, leader sur le marché américain grâce à son partenariat avec Tesla26. Pour l'approvisionnement du marché européen, la tendance est à la fabrication des cellules en Europe par des fabricants asiatiques : LG Chem en Pologne pour les batteries de la Renault ZOE II, Nissan AESC (coentreprise entre Nissan et NEC) au Royaume-Uni pour celles de la Nissan LEAF II, Samsung SDI en Hongrie pour celles de la BMW i3, LG Chem en Allemagne pour la Volkswagen ID327.

En 2021, CATL a une part de marché de 32 %, suivi par LG Energy Solution (21 %) et Panasonic. En janvier 2022, LG Energy Solution (LGES) lève l'équivalent de 10,6 milliards de dollars à la Bourse de Séoul pour financer le développement d'usines à l'étranger (États-Unis et Pologne). LGES fournit déjà des batteries à Tesla, Hyundai, Volkswagen et General Motors et vient de signer un accord avec Stellantis28. Le marché des batteries pour voitures électriques et hybrides a progressé de 113 % en 2021. Les trois principaux fabricants alimentent 67 % du marché mondial : CATL (31 %), qui progresse de 204 %, LGES (22 %), en hausse de 72 %, et Panasonic (14 %), en progression de 39 %. Leur principal client est Tesla (23 %). CATL alimente surtout la Chine, LGES l'Europe et Panasonic l'Amérique29.

Asie

Le groupe japonais Panasonic reste au 1er rang mondial des fabricants de cellules pour batteries au premier quadrimestre 2018 avec une production de 3 330 MWh, en progression de 21,5 % par rapport à 2017, mais sa part de marché recule de 31,4 % à 21,1 % ; au 2e rang, le chinois CATL a produit 2 274 MWh, en progression de 261 % (14,4 % du marché), et au 3e rang, le chinois BYD 1 735 MWh (+180,6 % ; 11 % du marché) ; au 4e rang, le coréen LG Chem, avec 1 670 MWh (+39 %) recule de 13,8 % à 10,6 % du marché et au 5e rang, le coréen Samsung SDI 879 MWh (+47 %) recule de 6,8 % à 5,6 % du marché. Au total, ces cinq producteurs représentent 64 % du marché mondial30.

Une alliance financée par le gouvernement japonais a été créée en mai 2018 pour accélérer le développement des batteries solides ; elle comprend des constructeurs (Toyota, Nissan et Honda), des fabricants de batteries (Panasonic et GS Yuasa) et le Libtec, organisme de recherche nippon sur les batteries lithium-ion. L'objectif est de doubler l’autonomie des voitures électriques pour passer à 800 kilomètres d’ici 2030, avec un premier objectif fixé à 550 kilomètres à l’horizon 2025.

En , le gouvernement chinois a supprimé toute subvention pour les batteries qui n'assurent pas une autonomie d'au moins 150 km ; cette nouvelle politique va déclencher une consolidation à grande échelle dans l'industrie des batteries automobiles en Asie, où sévit une centaine d'acteurs. Les producteurs japonais et sud-coréens ont eux aussi programmé une montée en puissance rapide. Entre 2017 et 2020, Panasonic, qui travaille quasi exclusivement pour Tesla, va plus que doubler ses volumes de production avec l'inauguration de sa Gigafactory au Nevada au début des années 2020. CATL va quintupler ses capacités de production d'ici à 2020 grâce à une usine chinoise géante. Le nouveau site de LG Chem à Wroclaw en Pologne va approvisionner Renault, Audi ou Volvo. Samsung SDI a transformé une ancienne usine d'écrans plasma à Goed en Hongrie en un centre de production de batteries lithium-ion afin de livrer Volkswagen et BMW ; ce dernier a cependant signé un contrat avec CATL31.

La société chinoise Contemporary Amperex Technology Limited (CATL) annonce en une batterie lithium-ion, pour voitures électriques, capable de durer 16 ans et une distance de 2 millions de kilomètres, deux fois plus que les garanties actuelles, limitées à huit ans en moyenne, et 1 million de kilomètres au maximum chez Lexus. En revanche, le prix de ces batteries serait 10 % plus élevé que celles actuelles. Tesla annonce 1,6 million de kilomètres pour ses batteries, moins chères à produire, et General Motors a présenté ses batteries Ultium, ayant une durée de vie annoncée supérieure à 1 million de kilomètres32.

En 2020, l'Inde envisage un plan analogue à l'« Airbus des batteries » afin de s’affranchir de sa dépendance à la Chine pour ses cellules de batteries lithium-ion. Le gouvernement estimerait qu’il y aurait sur son territoire le potentiel suffisant pour créer au moins 5 Gigafactories de type Tesla pour une capacité totale de 50 GWh33.

États-Unis

Tesla a construit sa Gigafactory 1 au Nevada avec une capacité de 35 GWh/an et prévoit des Gigafactory 2 et suivantes à Buffalo dans l'État de New York, au Japon et en Chine. Tesla a sécurisé en ses approvisionnements en lithium pour trois ans grâce à un contrat avec la compagnie australienne Kidman Resources34.

General Motors construit trois « Gigafactories » de batteries : la première doit ouvrir en 2022 à Lordstown (Ohio) avec une capacité de 30 GWh/an, la seconde (40 GWh/an) en 2023 à Spring Hill (Tennessee), et la troisième (50 GWh/an) en 2024 à Lansing (Michigan). Leur production de 120 GWh/an au total permettra à General Motors de produire 1 million de voitures électriques par an à l’horizon 2025. Un quatrième site devrait être annoncé prochainement. Ces usines, implantées à proximité de sites d’assemblage de véhicules GM, appartiennent à Ultium Cells, une coentreprise rassemblant GM et le groupe coréen LG Chem35.

Stellantis et Samsung SDI annoncent en mai 2022 une coentreprise pour la construction d'une usine de batteries dans la ville de Kokomo (Indiana), qui produira des modules de batterie à partir de 2025 pour les différents modèles du groupe en Amérique du Nord, avec une capacité de production initiale de 23 GWh/an, avec une possibilité d'aller jusqu'à 33 GWh/an36.

Europe

Le projet Northvolt, soutenu par la Commission européenne via un prêt de la Banque européenne d'investissement (BEI) de 52,5 millions d’euros, a été initié par deux anciens de chez Tesla ; il rassemble Scania, Siemens et ABB pour construire en Suède une usine de batteries qui devrait entrer en service en 2020 avec un objectif de production de 8 GWh/an de cellules, puis 32 GWh/an d’ici 202337. La construction de l'usine a commencé le à Skellefteå, en Suède ; le consortium Northvolt a reçu l'adhésion du fabricant danois d'éoliennes Vestas30. Les deux fondateurs, Peter Carlsson, ancien responsable production de la Model S, et Paulo Cerruti, ont choisi la Suède parce qu'on y dispose d'une énergie pas chère et à 100 % hydraulique, ce qui permet de minimiser les émissions de CO2 ; ils espèrent aussi pouvoir s'approvisionner en nickel, cobalt, lithium et graphite en Scandinavie. Afin d'être compétitifs avec les géants asiatiques, ils comptent réduire leurs coûts par une intégration verticale très forte et automatiser les process38.

Soutenue par la Commission européenne et sa banque d’investissement, l’European Battery Alliance (EBA) veut promouvoir un « Airbus des batteries » ; elle estime qu’il faudrait « au moins 10 à 20 gigafactories » pour satisfaire la demande de l’Union européenne en batteries. Dès 2025, le continent pourrait capter un marché de 250 milliards d’euros, alors qu'en 2018 les constructeurs asiatiques monopolisent ce marché. Après avoir soutenu le projet Northvolt, ils poussent les projets du français Saft, récemment racheté par Total et du consortium allemand Terra-E39.

Les entreprises coréennes LG Chem et Samsung SDI exploitent déjà (en 2018) des usines de cellules pour batteries en Europe, respectivement en Pologne et en Hongrie, et le fabricant chinois de batteries CATL (Contemporary Amperex Technology), qui a signé des contrats de fourniture avec BMW, Volkswagen, Daimler et l’alliance Nissan-Renault, envisage la construction d’une usine en Europe40. CATL a décidé en de construire cette usine à Erfurt en Allemagne ; elle aura une capacité de 14 GWh/an41.

Le , Peter Altmeier, ministre de l'Économie et de l'Énergie allemand, annonce la mobilisation d'un milliard d'euros d'ici à 2021 pour faciliter le lancement d'une production de cellules lithium-ion en Allemagne, afin que l'Allemagne et l'Europe puissent satisfaire 30 % de la demande mondiale d'ici à 203042.

La Commission européenne donne le son accord « de principe » au versement par Paris et Bruxelles de subventions aux projets d'« Alliance européenne des batteries », sans que celles-ci soient jugées comme des aides d'état illégales. Le montant des subventions autorisées sera cependant limité à 1,2 milliard d'euros, soit moins que le 1,7 milliard promis par la France et l'Allemagne. En ajoutant les fonds privés, les investissements dans cette initiative pourraient représenter jusqu'à 5 à 6 milliards d'euros. Peter Altmaier, ministre allemand de l'Économie, annonce avoir reçu plus de trente-cinq marques d'intérêt43.

La Roumanie annonce en la réouverture de plusieurs mines pour contribuer au projet d’Alliance européenne des batteries. Il s'agit de mines de cobalt, utilisé pour la fabrication des cathodes dans les cellules des accumulateurs lithium-ion, et de graphite, principal constituant des anodes44.

La Commission européenne attribue, le , le label « projet européen d'intérêt commun » (IPCEI) au projet d'« Airbus des batteries » lancé par la France et rejoint par six autres États membres de l'UE (Allemagne, Belgique, Pologne, Italie, Suède, Finlande) ; ce label autorise les aides d'État. Le projet réunit dix-sept entreprises, dont PSA, Saft, BASF, BMW, Varta, Eneris, Solvay et Umicore. Le total des aides d'État promises devrait atteindre 3,2 milliards d'euros, qui s'ajouteront aux 5 milliards d'investissement prévus par les entreprises45.

La coentreprise Volkswagen-Northvolt annonce en mai 2020 la construction d'une première usine de batteries sur le site Volkswagen de Salzgitter en Allemagne. Elle produira 16 GWh d’accumulateurs chaque année dès 2024, soit environ le dixième de la demande européenne, estimée à 150 GWh par an en 202546.

En novembre 2020, le fabricant chinois de batteries SVolt annonce la construction d'une usine de batteries pour voitures électriques en Allemagne, dans la région de Sarrelouis ; sa capacité de production de 24 GWh permettra d'équiper entre 300 000 et 500 000 voitures par an ; elle devrait démarrer à la fin de 202347.

En mars 2021, Volkswagen annonce son objectif de produire 240 GWh de batteries en 2030 dans six usines, contre 30 GWh en 2023 lors du démarrage des deux premières usines : l’usine suédoise de Skellefteå sera la première à atteindre 40 GWh en 2023, puis celle de Salzgitter en 2025. Un modèle unique de batterie sera utilisé sur 80 % de la gamme, ce qui devrait permettre une réduction du prix des voitures de 30 % en milieu de gamme et de 50 % sur le segment d’entrée de gamme48,49.

Les projets d'usines géantes de batteries se multiplient en Europe : avant même les annonces de Volkswagen, les experts de l'ONG Transport & Environnement avaient recensé 22 projets, dont 8 en Allemagne, représentant 460 GWh de capacité en 2025 et 730 GWh en 203050.

Le 29 décembre 2021, la première usine de Northvolt démarre sa production de batteries, les premières à avoir été entièrement conçues, développées et assemblées par une entreprise créée en Europe51.

Au Royaume-Uni, le projet d'usine de batteries de Britishvolt dans la région du Northumberland, annoncé en 2000, a sécurisé son investissement de 1,7 milliard £ (2 milliards ). Ses 30 GWh de capacité devraient représenter un tiers de besoin en batteries de l’industrie automobile britannique en 2030. Son démarrage est prévu pour 202452.

ACC, la coentreprise fondée en août 2020 par PSA et TotalEnergies, rejoints en septembre 2021 par Mercedes-Benz, annonce le 22 mars 2022 un rehaussement majeur de son objectif 2030 de capacité de production de batteries à 120 GWh au lieu de 48 GWh initialement prévus. Un troisième site de production est choisi : Termoli en Italie. Les deux autres sites choisis antérieurement, Douvrin en France et Kaiserslautern en Allemagne, devaient au départ atteindre progressivement une cadence de 450 000 batteries par an. Douvrin, qui doit être mis en service en 2023, voit son objectif porté à 700 000 ou 800 000 batteries par an53.

A la mi-2022, l'Europe compte près de 40 projets majeurs de gigafactories (de plus de 10 GWh) pour un total d'au moins 1 400 GWh, qui seraient installés dans les dix prochaines années, permettant d'équiper environ 17,5 millions de véhicules par an à cet horizon, alors que l'Europe produisait sur son territoire environ 20 millions de voitures particulières avant la crise du Covid-19. La capacité annoncée pour 2030 a quasiment doublé par rapport à mars 2021 : l'ONG Transport et Environnement l'estimait alors à 730 GWh. L'Allemagne compte sept projets majeurs (plus de 500 GWh), la Grande-Bretagne 4 projets (170 GWh), la France 3 projets (120 GWh), l'Espagne 4 projets (90 GWh) et l'Italie 2 projets (85 GWh). Plus de 40 % des capacités annoncées (620 GWh) proviennent d'acteurs non européens, dont 250 GWh par Tesla et le solde par les acteurs asiatiques qui dominent jusqu'ici le marché54.

France

Après l'accord « de principe » donné par la Commission européenne le au versement par Paris et Bruxelles de subventions aux projets d'« Alliance européenne des batteries », Bruno Le Maire confirme que le premier projet est porté par Saft, propriété du groupe Total, et PSA, via sa filiale allemande Opel ; il débutera par une usine pilote de 200 salariés, dès 2020, en France, puis deux usines de production, l'une en France et l'autre en Allemagne, de 1 500 salariés chacune, d'ici 2022-23, qui produiront d'abord des batteries lithium-ion liquides « améliorées », puis adopteront à partir de 2025-2026 la technologie solide55. Le PDG de Total, marqué par son échec dans le secteur des panneaux solaires, estime que ce projet ne serait pertinent qu’en investissant dans la future génération de batteries. Il demande également des garanties de l’Union européenne afin de protéger le marché face aux concurrents asiatiques. Il explique que l’initiative nécessitera d’« énormes » subventions publiques43.

Le 3 septembre 2020, le constructeur automobile PSA et le pétrolier Total (avec sa filiale Saft) annoncent la création d’Automotive Cells Company (ACC), une coentreprise chargée de créer deux usines de cellules de batteries dès 2023 en France et Allemagne. ACC développe déjà les cellules lithium-ion sur le site Saft de Nersac, près d’Angoulême ; la production de ses batteries sera relocalisée en 2023 sur deux autres sites à forte capacité : en France à Douvrin (62) pour Peugeot/Citroën, et à Kaiserslautern en Allemagne pour Opel, avec 8 GWh de capacité annuelle, portée progressivement à 48 GWh en 2030, soit l’équivalent d’un million de véhicules électriques56.

Le , Renault annonce deux partenariats majeurs pour des usines géantes de batteries, le premier avec le chinois EnVision pour la construction d'une « gigafactory » à Douai (9 GWh en 2024, 24 GWh en 2030), représentant un investissement de 2 milliards  et 2 500 emplois à horizon 2030, le second avec la startup grenobloise Verkor, dont il prend plus de 20 % du capital, afin de lui permettre de construire une ligne pilote dès 2022 pour codévelopper des batteries haute performance, qui équiperont les véhicules à batterie haut de gamme de Renault (de segment C et plus), ainsi que les Alpine électriques. Verkor construira ensuite une « gigafactory » de 16 GWh, qui démarrera en 2026 et emploiera 1 200 personnes à plein régime57.

Prix

 
Courbe d'apprentissage des accumulateurs lithium-ion: le prix des batteries a baissé de 97 % en trois décennies.

Selon Bloomberg BNEF58, le prix des packs de batteries pour voiture électrique est passé en 10 ans (2010-2020) de 1 100 $ à 137 $ par kWh (102 $ pour les cellules + 35 $ pour le pack). Le prix moyen des batteries pour bus en Chine est à 105 $/kWh. BloombergNEF estime que le prix pourrait baisser de 40 % pour atteindre 58 $/kWh à l’horizon 203059.

En 2021, Bloomberg estime le coût d’une batterie à 116 €/kWh en 2021, soit 6 % de moins qu’en 2020 (124 €/kWh), tous types de batteries confondus. La baisse de prix sur les batteries pour voitures électriques est encore plus marquée, à 104 €/kWh. En Chine, le prix moyen des batteries est à 98 €/kWh. Les États-Unis et l’Europe contribuent à faire remonter le prix mondial moyen, affichant respectivement des tarifs 40 et 60 % plus élevés. Nissan envisage pour 2030 des batteries solides à un coût de 65 €/kWh60.

En septembre 2022, BMW présente son projet « Neue Klasse » qui utilisera un nouveau type de batteries, deux fois moins chère selon le constructeur, ce qui ramènerait le coût de production global d'une voiture électrique au niveau de celui d’un modèle thermique. La densité énergétique serait améliorée de 20 %, l'autonomie en hausse jusqu’à 30 % et la vitesse de recharge en progrès de 30 % ; les rejets de CO2 engendrés par la production de ces batteries seraient abaissés de 60 %61.

Réglementation

La Commission européenne présente en décembre 2020 un projet de règlement, qui devra être validé par les États membres et le Parlement européen, qui imposera des critères environnementaux sur l'ensemble de la chaîne de vie des batteries, de l'extraction des matières premières au recyclage, en passant par la production. Pour limiter l'empreinte carbone de leur production, les fabricants devraient d'abord la mesurer et la déclarer à compter de . Un système de « passeport numérique » permettra un suivi fin de l'origine et du traitement des matériaux utilisés. En , des labels de classe de performance seront introduits. Sur la base des données alors recueillies, des seuils maximaux d'empreinte carbone seraient fixés, à chaque niveau de la chaîne, à partir de juillet 2027. Des critères de performance et de sécurité seront aussi définis. Les critères écologiques à respecter porteront en particulier sur la durabilité des matières premières utilisées, le recours à des matériaux recyclés et la propreté de l'énergie consommée pour la fabrication. Le volet recyclage du plan entrerait en vigueur dès 2025. L'objectif de collecte séparée des batteries portables passerait alors à 65 % (puis 70 % en 2030), contre 45 % dans les textes actuels. Thierry Breton avertit : « Les batteries ne respectant pas totalement les normes que nous fixerons sont interdites au sein du marché unique ». Le commissaire à l'Énergie, Maros Sefcovic, se dit « persuadé que d'ici à 2025, l'Union européenne sera en mesure de produire suffisamment de cellules de batteries pour répondre aux besoins de l'industrie automobile européenne »62.

Recyclage

Une usine de recyclage des batteries de véhicules électriques, lancée à titre expérimental en 2011 à Dieuze (Moselle) par Veolia et Renault, va passer au stade industriel avec des aides du « programme investissements d'avenir », passant de 1 000 t recyclées en 2014 à 5 000 t prévues en 202063.

La Société nouvelle d'affinage des métaux (SNAM) à Viviez (Aveyron), filiale du holding belge Floridienne, retraite 6 000 t d'accumulateurs par an, dont 8 % de batteries d'automobiles ; elle fabriquera à partir de 2018 des batteries avec les composants recyclés. SNAM ouvrira d'abord au printemps 2018 un atelier pilote de batteries lithium-ion recyclées. Pour la fabrication en série, l'entreprise cherche un nouveau site dans l'Aveyron pour ouvrir en 2019 une usine d'une capacité de 20 MWh par an. Elle améliorera ensuite les procédés pour passer à 4 000 MWh par an vers 2025. Les constructeurs automobiles ne voulant pas de batteries recyclées, la société vise le marché en croissance du stockage de l'électricité dans l'industrie, le bâtiment et les énergies renouvelables64.

La société belge Umicore exploite une usine de recyclage de batteries à Hoboken près d’Anvers. L’entreprise allemande Saubermacher et sa filiale autrichienne Redux Recycling ont inauguré en une usine de recyclage de batteries pour véhicules électriques à Bremerhaven, dans le nord de l’Allemagne. Le site est capable de traiter tous les types de batteries lithium-ion et a une capacité de 10 000 t/an. Le volume de batteries en fin de seconde vie étant encore faible, les partenaires s’attendent à ne recycler que 2 000 à 3 000 t/an au cours des prochaines années30.

Recherche et développement

En 2011, le Laboratoire d'innovation pour les technologies des énergies nouvelles et les nanomatériaux bat le record du monde de distance pour une propulsion électrique en équipant un véhicule de batteries lithium-ion à base de phosphate de fer qui parcourt 1 280 kilomètres en 24 heures autour de Grenoble65.

En 2013, le programme européen Life + soutient un projet dit « LIFE BIBAT » porté par le Commissariat à l'énergie atomique et aux énergies alternatives visant à « valider une ligne pilote pour une nouvelle génération de batteries lithium-ion écologiques de conception bipolaire. Le projet BiBAT vise à satisfaire aux besoins énergétiques et à remédier au problème de l'épuisement des ressources dans le cadre de la fabrication de batteries lithium-ion »66.

Les batteries solides semblent bien placées pour succéder à terme aux batteries lithium-ion. Elles promettent une capacité de stockage accrue, une meilleure sécurité, un coût réduit, une plus grande durabilité et même une charge plus rapide. L'électrolyte liquide y est remplacé par un matériau solide de type céramique ou un polymère ; elles ne contiennent aucun composant liquide ou combustible et offrent donc une meilleure sécurité en réduisant notamment les risques d'incendie. Hyundai, Toyota, Fisker, BMW, Google, Solvay, Bosch, Dyson, Continental travaillent au développement de cette technologie67. Les batteries sodium-ion semblent également une alternative prometteuse, le sodium étant quarante fois plus abondant que le lithium68.

Le projet européen Lisa (de l'anglais Lithium Sulfur for Safe Electrification), regroupant 13 partenaires (instituts de recherche et industriels dont Renault), est lancé le pour mettre au point en quatre ans une batterie de traction lithium-soufre pour la mobilité électrique. Moins dangereuses que les batteries lithium-ion grâce à leur électrolyte solide non inflammable, elles seraient aussi deux fois moins lourdes et moins encombrantes, autorisant leur utilisation dans les véhicules lourds, notamment dans les cars et bus69.

En 2020, la startup californienne Enevate annonce la commercialisation à partir de 2024 d’une nouvelle génération de cellules lithium-ion très performantes, dotées d'une anode en silicium : plus légères que celles qui sont actuellement utilisées, elles devraient permettre de charger 75 % de la capacité d’une batterie en cinq minutes. Elles pourront être produites en grande quantité sur les lignes de fabrication existantes, ce qui devrait accélérer leur adoption par les constructeurs70.

En , la société californienne QuantumScape présente une batterie lithium-ion tout-solide basée sur des séparateurs en céramique flexibles, qui pourrait se charger à 80 % en 15 minutes et aurait une durée de vie améliorée. Créée en 2010 et issue de l’université Stanford, cette start-up compte parmi ses soutiens Volkswagen, qui l'accompagne en tant que partenaire industriel depuis 2012 et a investi plus de 300 millions de dollars dans son développement ; QuantumScape a conclu un partenariat avec Volkswagen pour fournir 20 GWh de batteries d’ici 2024-2025 ; elle est cotée à Wall Street et dispose d’une enveloppe de 1,5 milliard de dollars pour ce projet71,72.

Le , la Commission européenne approuve une aide publique de 2,9 milliards  octroyée par 12 États membres, dont l'Allemagne, la France, l'Italie et l'Espagne, pour un vaste projet commun de recherche sur des batteries de nouvelle génération, baptisé « The european battery innovation ». Il complète le premier projet européen dit « Airbus des batteries », lancé fin 2019 par sept États avec 3,2 milliards  d'aides d'État, qui vise à lancer les premières « giga factories » européennes dans les deux ans. Le projet de recherche réunira jusqu'en 2028 une quarantaine d'entreprises, dont les constructeurs BMW, Fiat-Chrysler et Tesla, le spécialiste suédois des piles Northvolt et le chimiste français Arkema, pour innover sur toute la chaine de valeur73.

Notes et références

Notes

  1. En français le terme « pile » désigne un empilement d'éléments quels qu'ils soient. Néanmoins le terme pile électrique désigne uniquement un générateur d’électricité chimique (non rechargeable).

Références

Articles connexes

Générateur électrique

 
 
 
 
Un générateur General Electric

Un générateur électrique est un dispositif permettant de produire de l'énergie électrique à partir d'une autre forme d'énergie. Par opposition, un appareil qui consomme de l'énergie électrique s'appelle un récepteur électrique.

Modélisation

Un générateur réel peut se modéliser de deux manières différentes :

Générateur idéal de tension

 
Symbole d'un générateur idéal de tension dans un circuit.

Le générateur idéal de tension est un modèle théorique. C'est un dipôle capable d'imposer une tension constante quelle que soit la charge reliée à ses bornes. Il est également appelé source de tension.

Générateur idéal de courant

 
Symbole d'un générateur idéal de courant dans un circuit

Pour le générateur idéal de courant, le courant produit est constant, quelle que soit la tension demandée et la charge à alimenter. Il est également appelé source de courant.

C'est également un modèle théorique car l'ouverture d'un circuit comportant un générateur de courant non nul devrait conduire à fournir une tension infinie. Il est impossible de placer en série deux générateurs de courant de valeurs différentes car, cela revient à imposer deux courants différents dans un même fil1.

Machine tournante

La très grande majorité des générateurs électriques sont des machines tournantes, c'est-à-dire des systèmes ayant une partie fixe, et une partie mobile tournant dans (ou autour de) la partie fixe. Cependant, la variété de machines tournantes créées au cours des siècles implique des différences importantes dans les différentes technologies et techniques utilisées pour produire le courant, d'une part, et dans les systèmes 'annexes' (onduleurs, électronique de puissanceetc.) éventuellement nécessaires pour leur bon fonctionnement.

Générateur électrostatique

 

Le générateur électrostatique n'est pas une machine tournante bien qu'elle fasse appel à la rotation d'un disque frottant sur les balais. Cependant ce concept est à l'origine de la conception des machines tournantes.

La machine électrostatique fait appel aux lois de l'électrostatique à la différence des machines dites électromagnétiques. Bien que des moteurs électrostatiques aient été imaginés (ils fonctionnent sur le principe de la réciprocité des générateurs électrostatiques)2, ils n'ont pas eu de succès (mais les nanotechnologies pourraient proposer de tels « nanomoteurs » électrostatiques) ; en revanche, en tant que générateurs de très haute tension, les machines électrostatiques connaissent leur principale application dans le domaine des accélérateurs d'ions ou d'électrons. Elles transforment l'énergie mécanique en énergie électrique dont les caractéristiques sont la très haute tension continue et le microampérage. La puissance des machines du XVIIIe siècle et du XIXe siècle était en effet infime (quelques watts) et les frottements mécaniques ne leur laissaient qu'un très mauvais rendement. La raison en est que la densité maximale d'énergie du champ électrique dans l'air est très faible. Les machines électrostatiques ne peuvent être utilisables (de manière industrielle) que si elles fonctionnent dans un milieu où la densité d'énergie du champ électrique est assez élevée, c'est-à-dire pratiquement dans un gaz comprimé, qui est généralement l'hydrogène ou l'hexafluorure de soufre (SF6), sous des pressions comprises entre 10 et 30 atmosphères3.

Dynamo

Une génératrice de courant continu appelée populairement « dynamo », est, comme beaucoup de générateurs électriques, une machine tournante. Elle fut inventée en 1861 par le Hongrois Ányos Jedlik et améliorée en 1871 par le Belge Zénobe Gramme.

Cette machine étant réversible, elle peut fonctionner aussi bien en génératrice qu'en moteurb. Elle devient facilement un moteur électrique, ce qui implique que, lors de son arrêt, la dynamo doit être déconnectée de sa charge si celle-ci peut lui fournir un courant en retour : batterie d'accumulateurs, autre dynamo. Cette caractéristique a été utilisée dans les petites automobiles des années 1970. Un système de relais y connectait la batterie pour fournir un courant à la dynastar qui faisait démarrer le moteur à combustion interne et passait automatiquement en dynamo lorsque celui-ci atteignait un certain régime.

Alternateur

 
Générateur électrique de 1920

La découverte en 18324 par Faraday des phénomènes d'induction électromagnétique lui permet d'envisager de produire des tensions et des courants électriques alternatifs à l'aide d'aimants. Pixii, sur les indications d'Ampère, construit la même année une première machine qui sera perfectionnée ensuite (1833 - 1834) par Sexton et Clarke4. Un alternateur est une machine rotative qui convertit l'énergie mécanique fournie au rotor en énergie électrique à courant alternatif.

Plus de 95 % de l’énergie électrique est produite par des alternateurs : machines électromécaniques fournissant des tensions alternatives de fréquence proportionnelle à leur vitesse de rotation. Ces machines sont moins coûteuses et ont un meilleur rendement que les dynamos, machines qui délivrent des tensions continues (rendement de l'ordre de 95 % au lieu de 85 %).

Principe de l'alternateur

Cette machine est constituée d'un rotor (partie tournante) et d'un stator (partie fixe).

Le rotor
l'inducteur peut être constitué d'un aimant permanent (générant donc un champ constant), dans ce cas la tension délivrée par la machine n'est pas réglable (si on ne tient pas compte des pertes dans les conducteurs) et sa valeur efficace et sa fréquence varient avec la vitesse de rotation. Plus couramment un électroaimant assure l'induction. Ce bobinage est alimenté en courant continu, soit à l'aide d'un collecteur à bague rotatif (une double bague avec balais) amenant une source extérieure, soit par un excitateur à diodes tournantes et sans balais. Un système de régulation permet l'ajustement de la tension ou de la phase5,cdu courant produit.
Le stator
l'induit, est constitué d'enroulements qui vont être le siège de courant électrique alternatif induit par la variation du flux du champ magnétique due au mouvement relatif de l'inducteur par rapport à l'induit.

Différents types d'alternateurs

Alternateurs industriels

Dans les alternateurs industriels, l'induit est constitué de trois enroulements disposés à 360°/3p (p : nombre de paires de pôles) soit 120°/1p pour une paire de pôles et trois enroulements, qui fournissent un système de courants alternatifs triphasés.

Augmenter le nombre de paire de pôle permet de faire baisser la vitesse de rotation de la machine. La fréquence du réseau étant de 50 Hz (50 cycles par seconde, soit 3 000 cycles par minute), les machines synchrones doivent suivre ce rythme pour alimenter le réseau. Augmenter le nombre de pôle permet de réaliser plus de cycles pour un seul tour et comme la fréquence est fixe, on doit ralentir la vitesse de rotation pour respecter les 3 000 cycles à la minute (en 50 Hz).

Alternateurs domestiques
 
Un alternateur de type « embarqué » (vue éclatée).

Dans les alternateurs domestiques (groupe électrogène monophasé), l'induit est constitué d'un seul enroulement.

Alternateurs embarqués

Les alternateurs embarqués, entre autres sur les véhicules automobiles, sont des alternateurs triphasés munis d'un système de redressementdiodes), qui délivrent un courant continu sous une tension d'environ 14 V pour les voitures et 28 V pour les camions, fournissant l'énergie électrique du véhicule et rechargeant sa batterie visant à fournir l'énergie lorsque le moteur sera à l'arrêt. L’alternateur doit être associé à un régulateur de tension protégeant la batterie d'une surcharge. Les mal nommées « dynamos » de bicyclettes sont elles aussi des alternateurs, dont l'inducteur est constitué d´un ou plusieurs aimants permanents.

Éolienne

Dans certains cas, par exemple sur certaines éoliennes, le rotor est externe et le stator, fixe, est disposé au centre de la génératrice. Les pales de l'éolienne sont directement reliées au rotor. L'éolienne est un alternateur.

Génératrice asynchrone

Les machines asynchrones en fonctionnement hypersynchrone (fréquence de rotation supérieure à la fréquence de synchronisme) fournissent également de l'énergie au réseau électrique auquel elles sont connectées. Elles ont le désavantage de ne pas pouvoir réguler la tension[réf. nécessaire], à la différence des machines synchrones qui peuvent assurer la stabilité des réseaux électriques. Cependant elles sont de plus en plus utilisées en génératrices de petites, et moyennes, puissances comme sur les éoliennes7 et les micro-barrages grâce au progrès récent de l'électronique de puissance. Une des applications est la machine asynchrone à double alimentation.

Générateur non tournant

Il existe des générateurs électriques ne nécessitant pas de machine tournante, tels que :

Générateur en développement

D'autres technologies de générateurs sont en développement sans avoir encore d'application industrielle à grande échelle :

Notes et références

Notes

  1. Un alternateur à rotor bobiné permet dans une certaine plage de fonctionnement le contrôle de P et Q, et donc de la phase.

Références

  1. (en) Convection of paramagnetic fluid in a cube heated and cooled from side walls and placed below a superconducting magnet, The heat transfert society of Japan, coll. « Thermal Science & Engineering Vol.14 No.4 », , 8 p. (lire en ligne [archive])

Annexes

Sur les autres projets Wikimedia :

Articles connexes

Générateur thermoélectrique

 
 
 
Générateur thermoélectrique
Thermoelectric Generator Diagram.fr.svg
Principe de fonctionnement du générateur thermoélectrique composé de matériaux de différents coefficients Seebeck (semi-conducteurs dopés p et dopés n), configuré comme un générateur thermoélectrique.
Présentation
Type

Un générateur thermoélectrique (GTE ou (en) TEG) est une plaque comportant des semi-conducteurs et utilisant l'effet Peltier pour produire de l'électricité en tirant parti de la différence de températures entre chaque face. Ce type de module est également utilisé pour le refroidissement thermoélectrique.

On appelle l'effet utilisé, l'« effet Peltier–Seebeck », car il dérive des travaux du physicien français Jean-Charles Peltier et du physicien allemand Thomas Johann Seebeck.

Le composant utilise généralement des circuits en cuivre et la partie semi-conductrice en tellurure de bismuth. Cette source d'électricité peut constituer un système d'alimentation autonome ou s'intégrer dans un réseau en tant que générateur intermittent, d'appoint ou de charge continue.

Histoire

En 1821, Thomas Johann Seebeck a redécouvert qu'un gradient thermique formé entre deux conducteurs dissemblables peut produire de l'électricité1,2. Au cœur de l'effet thermoélectrique se trouve le fait qu'un gradient de température dans un matériau conducteur entraîne un flux de chaleur ; cela entraîne la diffusion de porteurs de charge. Le flux de porteurs de charge entre les régions chaudes et froides crée à son tour une différence de tension. En 1834, Jean-Charles Peltier découvrit l'effet inverse, que le fonctionnement un courant électrique à travers la jonction de deux conducteurs différents pourrait, selon la direction du courant, le faire agir comme un réchauffeur ou un refroidisseur3.

Structure

Les générateurs d'énergie thermoélectrique se composent de trois composants principaux : les matériaux thermoélectriques, les modules thermoélectriques et les systèmes thermoélectriques qui s'interfacent avec la source de chaleur4.

Matériaux thermoélectriques

Les matériaux thermoélectriques génèrent de l'énergie directement à partir de la chaleur en convertissant les différences de température en tension électrique. Ces matériaux doivent avoir à la fois une conductivité électrique (σ) et une conductivité thermique (κ) élevées pour être de bons matériaux thermoélectriques. Le fait d'avoir une faible conductivité thermique garantit que lorsqu'un côté est chauffé, l'autre côté reste froid, ce qui contribue à générer une tension élevée dans un gradient de température. La mesure de l'amplitude du flux d'électrons en réponse à une différence de température à travers ce matériau est donnée par le coefficient Seebeck (S). L'efficacité d'un matériau donné à produire une puissance thermoélectrique est simplement estimée par son « facteur de mérite » zT = S2σT/κ.

Pendant de nombreuses années, les trois principaux semi-conducteurs connus pour avoir à la fois une faible conductivité thermique et un facteur de puissance élevé étaient le tellurure de bismuth (Bi2Te3), le tellurure de plomb (PbTe) et le silicium germanium (SiGe). Certains de ces matériaux contiennent des éléments quelque peu rares qui les rendent coûteux.

Aujourd'hui, la conductivité thermique des semi-conducteurs peut être abaissée sans affecter leurs propriétés électriques élevées en utilisant la nanotechnologie. Ceci peut être réalisé en créant des caractéristiques à l'échelle nanométrique comme des particules, des fils ou des interfaces dans des matériaux semi-conducteurs en vrac. Cependant, les procédés de fabrication des nanomatériaux sont encore difficiles.

Avantages thermoélectriques

Les générateurs thermoélectriques sont des dispositifs entièrement à semi-conducteurs qui ne nécessitent aucun fluide pour le carburant ou le refroidissement, ce qui les rend non dépendants de l'orientation, ce qui permet une utilisation dans des applications en apesanteur ou en haute mer5. L'utilisation des semi-conducteurs permet un fonctionnement dans des environnements sévères. Les générateurs thermoélectriques n'ont pas de pièces mobiles, ce qui produit un appareil plus fiable qui n'exige pas d'entretien pendant de longues périodes. La durabilité et la stabilité environnementale ont fait de la thermoélectricité un favori pour les explorateurs de l'espace lointain de la NASA, entre autres applications6. L'un des principaux avantages des générateurs thermoélectriques en dehors de ces applications spécialisées est qu'ils peuvent potentiellement être intégré dans les technologies existantes pour en augmenter l'efficacité et réduire l'impact environnemental en produisant de l'énergie utilisable à partir de la chaleur perdue7.

Module thermoélectrique

Un module thermoélectrique est un circuit contenant des matériaux thermoélectriques qui génèrent directement de l'électricité à partir de la chaleur. Un module thermoélectrique se compose de deux matériaux thermoélectriques dissemblables joints à leurs extrémités : un semi-conducteur de type n (avec des porteurs de charge négatifs) et un semi-conducteur de type p (avec des porteurs de charge positifs). Un courant électrique continu circule dans le circuit lorsqu'il y a une différence de température entre les extrémités des matériaux. En général, l'intensité du courant est directement proportionnelle à la différence de température :

J = − σ S ∇ T

σ est la conductivité locale, S est le coefficient Seebeck (également appelé thermopuissance), une propriété du matériau local, et ∇ T est le gradient de température.

En application, les modules thermoélectriques dans la production d'énergie fonctionnent dans des conditions mécaniques et thermiques très difficiles. Comme ils fonctionnent dans un gradient de température très élevé, les modules sont soumis à de grandes contraintes et déformations d'origine thermique pendant de longues périodes. Ils sont également soumis à la fatigue mécanique causée par un grand nombre de cycles thermiques.

Ainsi, les jonctions et les matériaux doivent être sélectionnés de manière à ce qu'ils survivent à ces conditions mécaniques et thermiques difficiles. De même, le module doit être conçu de telle sorte que les deux matériaux thermoélectriques soient thermiquement en parallèle, mais électriquement en série. L'efficacité d'un module thermoélectrique est grandement affectée par la géométrie de sa conception.

 

Conception thermoélectrique

Les générateurs thermoélectriques sont constitués de plusieurs thermopiles, chacune étant composée de nombreux thermocouples constitués d'un matériau de type n et de type p connectés. La disposition des thermocouples se présente généralement sous trois formes principales : planaire, verticale et mixte. La conception planaire implique des thermocouples placés horizontalement sur un substrat entre la source de chaleur et le côté froid, ce qui permet de créer des thermocouples plus longs et plus fins, augmentant ainsi la résistance thermique et le gradient de température et, finalement, la tension de sortie. La conception verticale a des thermocouples disposés verticalement entre la plaque chaude et la plaque froide, ce qui entraîne une forte intégration des thermocouples ainsi qu'une tension de sortie élevée, faisant de cette conception la plus utilisée commercialement. Dans la conception mixte, les thermocouples sont disposés latéralement sur le substrat, tandis que le flux de chaleur est vertical entre les plaques. Des microcavités sous les contacts chauds du dispositif permettent un gradient de température, ce qui permet à la conductivité thermique du substrat d'affecter le gradient et l'efficacité du dispositif8.

Pour les systèmes microélectromécaniques, les générateurs thermoélectriques peuvent être conçus à l'échelle des appareils portatifs pour utiliser la chaleur du corps sous forme de films minces9. Les TEG flexibles pour l'électronique portable peuvent être fabriqués avec de nouveaux polymères par des processus d'fabrication additive ou de projection thermique. Les TGE cylindriques destinés à utiliser la chaleur des pots d'échappement des véhicules peuvent également être fabriqués à l'aide de thermocouples circulaires disposés dans un cylindre10. De nombreux designs de TEG peuvent être réalisés pour les différents dispositifs auxquels ils sont appliqués.

Systèmes thermoélectriques

À l'aide de modules thermoélectriques, un système thermoélectrique produit de l'énergie en absorbant la chaleur d'une source telle qu'un pot d'échappement chaud. Pour fonctionner, le système a besoin d'un grand gradient de température, ce qui n'est pas facile dans les applications du monde réel. Le côté froid doit être refroidi par de l'air ou de l'eau. Des échangeurs de chaleur sont utilisés des deux côtés des modules pour fournir ce chauffage et ce refroidissement.

La conception d'un système thermoélectrique fiable fonctionnant à haute température présente de nombreux défis. L'obtention d'un rendement élevé dans le système nécessite une conception technique poussée pour trouver un équilibre entre le flux de chaleur à travers les modules et la maximisation du gradient de température à travers eux. Pour ce faire, la conception des technologies d'échange de chaleur dans le système est l'un des aspects les plus importants de l'ingénierie TGE. En outre, le système doit minimiser les pertes thermiques dues aux interfaces entre les matériaux à plusieurs endroits. Éviter les grandes chutes de pression entre les sources de chauffage et de refroidissement est un autre défi technique.

Si la production de courant alternatif est nécessaire (comme pour alimenter des équipements fonctionnant au courant alternatif du secteur), le courant continu des modules TE doit être redressé par un onduleur, ce qui réduit l'efficacité et augmente le coût et la complexité du système.

Matériaux pour générateurs thermoélectriques

Seuls quelques matériaux connus à ce jour sont identifiés comme matériaux thermoélectriques. La plupart des matériaux thermoélectriques ont aujourd'hui un zT, le facteur de mérite, d'une valeur d'environ 1, comme le tellurure de bismuth (Bi2Te3) à température ambiante et tellurure de plomb (PbTe) à 500–700 K. Cependant, pour être compétitifs avec d'autres systèmes de production d'énergie, les matériaux TEG doivent avoir un zT de 2–3. La plupart des recherches sur les matériaux thermoélectriques se sont concentrées sur l'augmentation du coefficient Seebeck (S) et la réduction de la conductivité thermique, notamment en manipulant la nanostructure des matériaux thermoélectriques. Étant donné que la conductivité thermique et électrique est en corrélation avec les porteurs de charge, de nouveaux moyens doivent être introduits afin de concilier la contradiction entre une conductivité électrique élevée et une conductivité thermique faible, comme cela est nécessaire11.

Lors de la sélection de matériaux pour la génération thermoélectrique, un certain nombre d'autres facteurs doivent être pris en compte. Pendant le fonctionnement, idéalement, le générateur thermoélectrique a un grand gradient de température à travers lui. La dilatation thermique introduira alors une contrainte dans le dispositif qui peut provoquer une fracture des pattes thermoélectriques ou une séparation du matériau de couplage. Les propriétés mécaniques des matériaux doivent être prises en compte et le coefficient de dilatation thermique des matériaux de type n et p doivent être raisonnablement bien adaptés. Dans le cas d'un système segmenté de générateurs thermoélectriques12, la compatibilité du matériau doit également être prise en compte pour éviter l'incompatibilité du courant relatif, défini comme le rapport entre le courant électrique et le courant thermique de diffusion, entre les couches de segments.

Le facteur de compatibilité d'un matériau est défini comme suit

s = 1 + z T − 1 S T 13

Lorsque le facteur de compatibilité d'un segment à l'autre diffère de plus d'un facteur de deux environ, le dispositif ne fonctionne pas efficacement. Les paramètres du matériau déterminant s (ainsi que zT) dépendent de la température, de sorte que le facteur de compatibilité peut changer du côté chaud au côté froid du dispositif, même dans un seul segment. Ce comportement est appelé autocompatibilité et peut devenir important dans les dispositifs conçus pour une application à grande température.

En général, les matériaux thermoélectriques peuvent être classés en matériaux conventionnels et nouveaux :

Matériaux conventionnels

De nombreux matériaux thermoélectriques sont utilisés dans les applications commerciales actuelles. Ces matériaux peuvent être divisés en trois groupes en fonction de la plage de température de fonctionnement :

  1. Basse température (jusqu'à environ 450 K) : Alliages à base de bismuth (Bi) en combinaison avec de l'antimoine (Sb), du tellure (Te) ou du sélénium (Se).
  2. Température intermédiaire (jusqu'à 850 K) : tels que les matériaux à base d'alliages de plomb (Pb).
  3. Plus haute température (jusqu'à 1 300 K) : matériaux fabriqués à partir d'alliages de silicium-germanium (SiGe)14.

Bien que ces matériaux restent encore la pierre angulaire des applications commerciales et pratiques de la production d'énergie thermoélectrique, des avancées significatives ont été réalisées dans la synthèse de nouveaux matériaux et la fabrication de structures matérielles présentant des performances thermoélectriques améliorées. Les recherches récentes se sont concentrées sur l'amélioration du facteur de mérite (zT) du matériau, et donc du rendement de conversion, en réduisant la conductivité thermique du réseau11.

Nouveaux matériaux

 
Génération d'électricité en saisissant les deux côtés d'un dispositif thermoélectrique flexible PEDOT:PSS.
 
PEDOT : modèle basé sur PSS intégré dans un gant pour générer de l'électricité par la chaleur corporelle

Les chercheurs tentent de développer de nouveaux matériaux thermoélectriques pour la production d'électricité en améliorant le facteur de mérite zT. Il se penchent notamment vers le composé semi-conducteur ß-Zn4Sb3, qui possède une conductivité thermique exceptionnellement faible et présente un zT maximum de 1,3 à une température de 670 K. Ce matériau est également relativement peu coûteux et stable jusqu'à cette température sous vide, et peut être une bonne alternative dans la gamme de température entre les matériaux à base de Bi2Te3 et PbTe11. Parmi les développements les plus passionnants dans les matériaux thermoélectriques, il y a celui du séléniure d'étain monocristallin qui a produit un zT record de 2,6 dans une direction15. D'autres nouveaux matériaux intéressants incluent les skuttérudites, les tétraédrites et les cristaux d'ions excités.

Outre l'amélioration du facteur de mérite, l'accent est de plus en plus mis sur le développement de nouveaux matériaux en augmentant la puissance électrique, en réduisant les coûts et en développant des matériaux respectueux de l'environnement. Par exemple, lorsque le coût du combustible est faible ou presque gratuit, comme dans la récupération de chaleur résiduelle, le coût par watt est uniquement déterminé par la puissance par unité de surface et la période de fonctionnement. En conséquence, il a initié une recherche de matériaux à haute puissance de sortie plutôt qu'à efficacité de conversion. Par exemple, les composés de terres rares YbAl3 ont un faible facteur de mérite, mais ils ont une puissance de sortie au moins double de celle de tout autre matériau et peuvent fonctionner sur la plage de température d'un source de chaleur résiduelle11.

Nouveau traitement

Pour augmenter le facteur de mérite (zT), la conductivité thermique d'un matériau doit être minimisée tandis que sa conductivité électrique et son coefficient Seebeck sont maximisés. Dans la plupart des cas, les méthodes visant à augmenter ou à diminuer une propriété entraînent le même effet sur les autres propriétés en raison de leur interdépendance. Une nouvelle technique de traitement exploite la diffusion de différentes fréquences de Phonons pour réduire sélectivement la conductivité thermique du réseau sans les effets négatifs typiques sur la conductivité électrique dus à la diffusion accrue simultanée des électrons16. Dans un système ternaire bismuth-antimoine-tellure, le frittage en phase liquide est utilisé pour produire des joints de grains semi-cohérents à faible énergie, qui n'ont pas d'effet de diffusion significatif sur les électrons17. La rupture consiste alors à appliquer une pression au liquide lors du frittage, ce qui crée un écoulement transitoire du liquide riche en Te et facilite la formation de dislocations qui réduisent fortement la conductivité du réseau17. La capacité à diminuer sélectivement la conductivité du réseau permet d'obtenir une valeur zT de 1,86, ce qui constitue une amélioration significative par rapport aux générateurs thermoélectriques commerciaux actuels dont la valeur zT est de ~ 0. 3-0,618. Ces améliorations soulignent le fait qu'en plus du développement de nouveaux matériaux pour les applications thermoélectriques, l'utilisation de différentes techniques de traitement pour concevoir la microstructure est un effort viable et utile. En fait, il est souvent judicieux de travailler pour optimiser à la fois la composition et la microstructure19.

Efficacité

L'efficacité habituelle des TGE est d'environ 5 à 8 %. Les appareils plus anciens utilisaient des jonctions bimétalliques et étaient encombrants. Des dispositifs plus récents utilisent des semi-conducteurs hautement dopés à base de tellurure de bismuth (Bi2Te3), tellurure de plomb (PbTe)20, oxyde de calcium manganèse (Ca2Mn3O8)21,22 ou leurs combinaisons23, en fonction de la température. Ce sont des dispositifs de semi-conducteurs et, contrairement aux dynamos, ils n'ont pas de pièces mobiles, à part pour l'usage occasionnel d'un ventilateur ou d'une pompe auxiliaires.

Applications

Les générateurs thermoélectriques ont des usages variés. Ils sont souvent utilisés pour des applications à distance de faible puissance ou lorsque des moteurs thermiques plus volumineux mais plus efficaces, tels que les moteurs Stirling, ne seraient pas possibles. Contrairement aux moteurs thermiques, les composants électriques solid state généralement utilisés pour effectuer la conversion d'énergie thermique en énergie électrique n'ont pas de pièces mécaniques. La conversion de l'énergie thermique en énergie électrique peut être effectuée à l'aide de composants qui ne nécessitent aucun entretien, qui sont intrinsèquement très fiables et qui peuvent être utilisés pour construire des générateurs de grande longévité sans entretien. Les générateurs thermoélectriques sont donc bien adaptés aux équipements dont les besoins en énergie sont faibles ou modestes, dans des endroits éloignés, inhabités ou inaccessibles, comme le sommet des montagnes, le vide spatial ou les profondeurs de l'océan.

Les principales utilisations des générateurs thermoélectriques sont les suivantes :

Chez les avions, les tuyères des moteurs ont été identifiées comme le meilleur endroit pour récupérer l'énergie, mais la chaleur des roulements du moteur et le gradient de température existant dans la peau de l'avion ont également été proposés24

Limitations pratiques

Outre le faible rendement et le coût relativement élevé, l'utilisation de dispositifs thermoélectriques dans certains types d'applications pose des problèmes pratiques résultant d'une résistance de sortie électrique relativement élevée, qui augmente l'auto-échauffement, et d'une conductivité thermique relativement faible, qui les rend inadaptés aux applications où l'évacuation de la chaleur est critique, comme dans le cas de l'évacuation de la chaleur d'un dispositif électrique tel que les microprocesseurs.

Marché émergent

Alors que la technologie GTE ((en) TEG) est utilisée dans les applications militaires et aérospatiales depuis des décennies, de nouveaux matériaux thermoélectriques36, et des systèmes sont en cours de développement pour générer de l'électricité en utilisant la chaleur perdue de basse ou haute température, et cela pourrait fournir une importante opportunité dans un futur proche. Ces systèmes peuvent également être évolutifs à n'importe quelle taille et avoir des coûts d'exploitation et de maintenance inférieurs.

En général, les investissements dans la technologie TEG augmentent rapidement. Le marché mondial des générateurs thermoélectriques est estimé à 320 millions de dollars américains en 2015. Une étude récente a estimé que le TEG devrait atteindre 720 millions de dollars en 2021 avec un taux de croissance de 14,5 %. Aujourd'hui, l'Amérique du Nord s'accapare 66 % de la part de marché et continuera d'être le plus grand marché dans un proche avenir37. Cependant, les pays d'Asie-Pacifique et d'Europe devraient croître à des taux relativement plus élevés. Une étude a révélé que le marché Asie-Pacifique croîtrait à un taux de croissance annuel composé (TCAC) de 18,3 % au cours de la période de 2015 à 2020 en raison de la forte demande de générateurs thermoélectriques par les industries automobiles pour augmenter l'efficacité énergétique globale, ainsi comme l'industrialisation croissante dans la région38.

Les générateurs thermoélectriques à petite échelle en sont également aux premiers stades de la recherche dans les technologies portables pour réduire ou remplacer la charge et augmenter la durée de charge. Des études récentes se sont concentrées sur le nouveau développement d'un thermoélectrique inorganique flexible, le séléniure d'argent, sur un substrat en nylon. Les thermoélectriques représentent une synergie particulière avec les appareils portables en récupérant l'énergie directement du corps humain, créant ainsi un appareil auto-alimenté. Un projet a utilisé du séléniure d'argent de type n sur une membrane en nylon. Le séléniure d'argent est un semi-conducteur à bande interdite étroite avec une conductivité électrique élevée et une faible conductivité thermique, ce qui le rend parfait pour les applications thermoélectriques39.

Le marché des TEG basse puissance ou « sub-watt » (c'est-à-dire générant jusqu'à 1 Watt crête) est une part croissante du marché des TEG, capitalisant sur les dernières technologies. Les principales applications sont les capteurs, les applications basse consommation et plus globalement les applications Internet des objets. Une société d'études de marché spécialisée a indiqué que 100 000 unités ont été expédiées en 2014 et s'attend à 9 millions d'unités par an d'ici 202040.

Références

  1. (en) « Sub-watt thermoelectric generator market on the up » [archive], (consulté le )

Articles connexes

Liens externes

Générateur de vapeur

 
 
 

Les générateurs de vapeur chaude Note 1 (GV) sont des composants essentiels des centrales électriques thermiques ou nucléaires, et de certains réseaux de chaleur.

La fonction du générateur de vapeur est d'échanger la chaleur entre le circuit primaire chauffé par le réacteur et le circuit secondaire qui fait tourner la turbine à vapeur — ou bien transporte la chaleur produite dans le cas d'un réseau de chaleur. Les générateurs de vapeur actuels les plus puissants atteignent environ 1 400 mégawatts. Un réacteur à eau pressurisée moderne dispose de 2 à 4 générateurs de vapeur dans l'enceinte de confinement.

Dans le circuit primaire d'un réacteur nucléaire, l'eau monte à 300 °C et 155 bars. Grâce aux générateurs de vapeur, l'eau du circuit secondaire est portée à ébullition, à une pression de 50 à 80 barsNote 2 : la vapeur s'échappe alors sous pression et fait tourner le groupe turbo-alternateur — c'est-à-dire la turbine couplée à l'alternateur — situé dans la salle des machines.

 
Schéma montrant le rôle d'un générateur de vapeur dans un réacteur à eau pressurisée.

Structure et géométrie

Un générateur de vapeur (GV) tel que ceux équipant les réacteurs nucléaires français est un cylindre d'une vingtaine de mètres de hauteur, renfermant 3 000 à 6 000 tubes1 en forme de U inversé.

L'échange de chaleur se fait par une grande quantité de tubes minces, dans lesquels circule le fluide chaud, et autour desquels circule le fluide à chauffer.

Les tubes ont un diamètre de 2 cm environ, et montent dans le cylindre jusqu'à 10 m. Ils sont fixés à la base sur une plaque dite tubulaire, et sont maintenus à intervalle d'un mètre par des plaques entretoises. Dans la partie courbe en haut des tubes, qui peut avoir jusqu'à 1,5 m de rayon pour les tubes extérieurs, les tubes sont maintenus par des barres anti-vibratoires.

Valeurs palier N4 : 5 610 tubes d'un diamètre de 19,05 mm et d'une épaisseur de 1,09 mm sont répartis au pas triangulaire de 27,43 mm sur la plaque à tubes.

Le faisceau de tubes est enveloppé par une chemise en tôle qui le sépare du retour d'eau extérieur et guide l'émulsion vers un étage de séparation puis de séchage.

Fonctionnement

Générateurs de vapeur à tubes en U équipant les réacteurs à eau sous-pression

 
Principe du fonctionnement côté secondaire des générateurs de vapeur à tubes en U verticaux

Description fonctionnelle - Taux de circulation

Dans le GV, l'eau du circuit primaire circule dans les tubes. L'entrée dans les tubes se fait sous la plaque tubulaire, dans la branche chaude. Le fluide monte dans les tubes, côté branche chaude, transmet une partie de sa chaleur au circuit secondaire pendant la montée ainsi que dans les cintres, puis redescend côté branche froide.

L'eau du circuit secondaire ("eau alimentaire") entre dans le GV en partie supérieure au-dessus de l'altitude du sommet de faisceau des tubes, généralement sous le niveau d'eau. Elle s'échappe sous forme de vapeur sous pression au sommet du GV.

L'eau alimentaire admise dans le GV sous le niveau d'eau, de façon à prévenir la condensation de la vapeur présente dans le dôme est rapidement dirigée vers le bas du GV où elle se mélange avec l'eau à saturation issue des séparateurs. Le mélange se dirige ensuite sous la chemise vers le faisceau de tubes où il est tout d'abord réchauffé à saturation et ensuite évaporé partiellement. Le "taux de circulation" (noté θ ) est le rapport du débit du mélange diphasique faisceau au débit de vapeur produit. Plus le taux de circulation est élevé plus la température du mélange admis au contact des pièces épaisses et du faisceau de tubes est élevée et meilleur est le brassage de l'eau dans le faisceau de tubes.

Exemple :

On s'arrange pour équilibrer la perte de charge de l'émulsion dans le faisceau et l'étage de séparation avec le terme moteur de thermosiphon procuré par l'altitude du niveau. La surface de l'eau (limite entre phase liquide et vapeur) est maintenue à niveau constant par un automatisme agissant sur une vanne réglante du circuit d'eau alimentaire ce qui assure de façon simple la régulation d'ensemble.

La vapeur produite arrive dans un grand collecteur de vapeur où l'on tente de limiter la présence de gouttelettes, toutefois au-dessus de 32 bars toute perte de charge se traduit par une légère condensation. Puis le collecteur se rétrécit et la vitesse de la vapeur augmente tandis que diminue la dimension des tuyaux (qu'il faut aussi calorifuger).

Exemple de calcul simplifié d'un générateur de vapeur

On tente dans ce paragraphe de retrouver de manière simple le dimensionnement général d'un générateur de vapeur de type classique de caractéristiques voisines de celui des réacteurs du palier N4. On effectue tout d'abord un calcul sans tenir compte de la présence du réchauffeur axial qui équipe ce type de GV. On apprécie ensuite le gain sur la pression vapeur ou la surface d'échange apporté par ce perfectionnement.

Le calcul estimatif effectué dans la boite déroulante montre que la conception à économiseur axial retenue pour les GV N4 et EPR fait gagner, toutes choses égales par ailleurs, environ 20 % sur la surface d'échange au prix de quelques tôles et tuyauteries internes non résistantes à la pression. À surface d'échange donnée, le gain sur l'échange thermique se traduit par une pression vapeur accrue de 2,8 bars toutes choses égales d'ailleurs procurant un rendement thermodynamique augmenté et donc à production d’électricité donnée :

Autres technologies

Les générateurs de vapeur de type Babcock sont à tubes droits et simple-passage. Les générateurs des centrales VVER russes sont à axe horizontal, disposition favorable du point de vue de la tenue au séisme.

Certains réacteurs de faible puissance sont également équipés de générateurs de vapeur avec des tubes simple-passage hélicoïdaux2.

Les générateurs de vapeur non nucléaires atteignent des températures de 450 °C et des pressions de 45 bars (45.105Pa).

Maintenance

Les générateurs de vapeur sont soumis à une visite décennale obligatoire conformément au règlement sur les appareils à vapeur3

Contrôle des tubes

Les tubes des générateurs de vapeur constituent la seconde barrière des centrales nucléaires, isolant le fluide primaire, au contact des crayons combustibles, et le fluide secondaire du circuit eau vapeur.

En conséquence, une attention toute particulière est accordée à la vérification de l'étanchéité des tubes au cours des arrêts de tranche.

L'examen non destructif des tubes est fait en fonction de l'historique, et selon un « plan de sondage » permettant de vérifier l'intégralité des tubes en 3 ou 4 visites.

Différents procédés sont utilisés pour contrôler les tubes : remplissage de la partie "secondaire" par de l'hélium pour vérifier leur étanchéité ; utilisation de courants de Foucault pour mesurer l'état mécanique des tubes.

Les tubes (en inconel 690) présentant des défauts, dus par exemple à la corrosion ou à des fissures, sources de fuites, sont bouchés (à leur entrée et sortie) pour éviter que le fluide du circuit primaire ne contamine le circuit secondaire. Le bouchon est en métal plein et il est conçu pour être fixé au tube via des dents ou cannelures venant s'incruster dans la paroi de celui-ci, mais depuis 2008, au moins cinq anomalies de pose des bouchons ont été détectées par EDF au moment de la maintenance de réacteurs à l'arrêt, anomalies qui a déjà conduit « au déplacement des bouchons dans les tubes » ce qui peut potentiellement altérer le générateur de vapeur. Ces anomalies ont mis « en cause la maîtrise de ces opérations ». Elles ont été depuis corrigées selon EDF et l'ASN4.

C'est une opération bien plus complexe, mais le tube peut aussi être réparé (opération appelée manchonnage lors de laquelle des manchons sont introduits non pas à l'extérieur du tube détérioré, mais à l'intérieur, l'étanchéité étant acquise par « dudgeonnage » robotisé et téléopéré, plusieurs "expansion hydraulique" successives (par dudgeon) ; la pièce rapporté est en acier 18MND5 revêtu d’inconel 690 (du côté circuit primaire uniquement5) ;
Ainsi alors qu'un projet prévoyait dans la tranche 5 de la centrale nucléaire de Gravelines de remplacer trois Générateurs de Vapeur, en 2016 EDF a proposé de continuer l'exploitation de la tranche avec ses Générateurs de Vapeur d’origine après épreuve hydraulique du circuit primaire et réparations dites de « manchonnage » des tubes des Générateurs pour conserver l'« intégrité de la seconde barrière »). C'était une première en France mais le groupe Westinghouse (qui a réalisé cette opération en 2017) l'avait déjà pratiqué dans plusieurs centrales d'autres pays (avec 19 000 manchons déjà posés en 15 ans)6. En France "tous les centres de production nucléaire du palier 1 300 MWe d'EDF sont potentiellement concernés" ; EDF a lancé un marché global pour le manchonnage7. Un autre procédé a été breveté en 1985, visant à créer un manchon métallique étanche dans la zone de fuite, par un traitement l'électrodéposition de nickel, par voie humide8.

Les tubes (plusieurs kilomètres dans chaque GV) sont maintenus par des plaques entretoises pour limiter leur vibration. Récemment, un phénomène de colmatage de l'espace restreint entre les tubes et les plaques a été mis en évidence : des oxydes métalliques véhiculés dans l'eau secondaire, tendent à se déposer dans les zones confinées quand l'eau se vaporise au contact du métal chaud. Tout colmatage nuit au fonctionnement du générateur de vapeur à long terme ; il est donc aujourd'hui traité (par nettoyage chimique et/ou à l'eau sous pression).

Incidents

Les incidents liés au générateur de vapeur sont assez fréquents dans l'industrie nucléaire9 :

Avantages et inconvénients

La vapeur d'eau est le mode de déplacement par excellence de l'énergie thermique pour des puissances très élevées (très bonne puissance spécifique de la vapeur et dimension non limitée de l'installation pour certains usages).

Mais la vapeur humide présente des inconvénients : dans les turbines elle augmente l'usure des aubes et dans les transports de chaleur, elle augmente les pertes calorifiques par contact/conductibilité-thermique des condensats avec les parois. Les circuits à vapeur sèche (appelés aussi surchauffées) sont plus complexes à conduire (pression et température plus élevées) mais ne présentent pas ces inconvénients.

Homonymes

On désigne aussi sous le terme "générateur de vapeur" :

Notes

  1. A remarquer que curieusement l'effet des dépôts sur la paroi secondaire des tubes n'est pas nécessairement négatif car dans la zone évaporatoire ils peuvent favoriser l'ébullition nucléée et améliorer l'échange tout au moins dans la première phase de l'exploitation des appareils

Références

Liens externes

Générateur thermoélectrique à radioisotope

 
 
 

Un générateur thermoélectrique à radioisotope (en abrégé GTR ; en anglais Radioisotope Thermoelectric Generator, RTG) est un générateur électrique nucléaire de conception simple, produisant de l'électricité à partir de la chaleur résultant de la désintégration radioactive de matériaux riches en un ou plusieurs radioisotopes, généralement du plutonium 238 sous forme de dioxyde de plutonium 238PuO2. Aujourd'hui, la chaleur est convertie en électricité par effet Seebeck à travers des couples thermoélectriques : les générateurs produits au siècle dernier utilisaient des matériaux silicium-germanium ; ceux produits actuellement mettent en œuvre plutôt des jonctions PbTe/TAGS, leur efficacité énergétique n'atteignant jamais 10 %. Pour améliorer ces performances, les recherches actuelles s'orientent vers des convertisseurs thermoïoniques et des générateurs Stirling à radioisotope, susceptibles de multiplier le rendement global par quatre.

De tels générateurs sont mis en œuvre en astronautique pour l'alimentation électrique des sondes spatiales, et plus généralement pour alimenter en électricité des équipements requérant une source d'énergie stable et fiable capable de fonctionner de façon continue sur plusieurs années sans maintenance directe — par exemple pour des applications militaires, sous-marines, ou en milieu inaccessible ; on avait ainsi conçu des générateurs miniatures pour stimulateurs cardiaques au 238Pu, aujourd'hui remplacés par des technologies reposant sur des batteries lithium-ion, et de tels générateurs de conception plus simple fonctionnant au strontium 90 ont été utilisés par le passé pour l'éclairage de certains phares isolés sur les côtes de l'URSS.

 
 
Photo du générateur à radioisotope de la sonde Cassini.
 
Rougeoiement d'une pastille de 238PuO2 sous l'effet de sa propre désintégration radioactive.
 
Vue de l'assemblage de la sonde New Horizons au 1 intégrant un modèle grandeur nature du GTR, remplacé par le vrai générateur peu avant le lancement du .

Source de chaleur

En comparaison avec d'autres équipements nucléaires, le principe de fonctionnement d'un générateur à radioisotope est simple. Il est composé d'une source de chaleur constituée d'un conteneur blindé rempli de matière radioactive, percé de trous où sont disposés des thermocouples, l'autre extrémité des thermocouples étant reliée à un radiateur. L'énergie thermique traversant les thermocouples est transformée en énergie électrique. Les thermocouples forment un module thermoélectrique, un dispositif constitué de deux sortes de métaux conducteurs, qui sont connectés en boucle fermée. Si les deux jonctions sont à des températures différentes, un courant électrique est généré dans la boucle.

Le radioisotope retenu doit avoir une demi-vie assez courte, afin de fournir une puissance suffisante. On choisit des demi-vies de l'ordre de quelques dizaines d'années. Il s'agit le plus souvent de plutonium 238, sous forme de dioxyde de plutonium 238PuO2, un puissant émetteur de particules α dont la période radioactive (demi-vie) est de 87,74 ans (32 046 jours). Cet isotope est de loin le plus utilisé parce que, outre sa demi-vie particulièrement bien adaptée, il émet tout son rayonnement sous forme de particules α, plus efficacement converties en chaleur que les particules β et a fortiori que les rayons γ.

Le premier radioisotope utilisé a été le polonium 210, en raison de sa période plus courte (seulement 138,38 jours) et donc de sa très grande puissance de rayonnement, tandis que l'américium 241 offre une alternative moins puissante mais cinq fois plus pérenne que le plutonium 238 en raison de sa période de 432,2 années (environ 157 850 jours) :

Variation dans le temps de la puissance d'un générateur thermoélectrique (GTR) pour trois radioisotopes
Radioisotope241Am238Pu210Po
Période radioactive 432,2 ans 87,74 ans 138,38 jours
Puissance spécifique 106 W/kg 567 W/kg 140 000 W/kg
Matériau radioactif 241AmO2 PuO2 à 75 % de 238Pu Po à 95 % de 210Po
Puissance initiale 97,0 W/kg 390,0 W/kg 133 000 W/kg
Après 1 mois 97,0 W/kg 389,7 W/kg 114 190 W/kg
Après 2 mois 97,0 W/kg 389,5 W/kg 98 050 W/kg
Après 4,5 mois     66 500 W/kg
Après 6 mois 96,9 W/kg 388,5 W/kg 53 280 W/kg
Après 1 an 96,8 W/kg 386,9 W/kg 21 340 W/kg
Après 2 ans 96,7 W/kg 383,9 W/kg 3 430 W/kg
Après 5 ans 96,2 W/kg 374,9 W/kg 14 W/kg
Après 10 ans 95,5 W/kg 360,4 W/kg 0 W/kg
Après 20 ans 93,2 W/kg 333,0 W/kg 0 W/kg
Après 50 ans 89,5 W/kg 262,7 W/kg 0 W/kg
Après 87,74 ans   195,0 W/kg  
Après 432,2 ans 48,5 W/kg  

Les isotopes 242Cm et 244Cm ont également été proposés sous forme Cm2O3 en raison de leurs propriétés particulières :

Avec une puissance spécifique respectivement de 98 kW/kg pour le 242Cm2O3 et de 2,27 kW/kg pour le 244Cm2O3, ces céramiques présentent néanmoins l'inconvénient d'émettre un flux important de neutrons en raison d'un taux de fission spontanée respectivement de 6,2 × 10-6 et 1,4 × 10-6 par désintégration α, ce qui nécessite un blindage plusieurs dizaines de fois plus lourd qu'avec le 238PuO2.

 

Conversion en électricité

Thermoélectricité

Les éléments thermoélectriques actuellement utilisés pour convertir en électricité le gradient de température généré par la désintégration des radioisotopes sont particulièrement peu efficaces : entre 3 et 7 % seulement, n'atteignant jamais 10 %. Dans le domaine astronautique, ces « thermocouples » ont longtemps été réalisés en matériaux silicium-germanium, notamment dans les GPHS-RTG des sondes Ulysses, Galileo, Cassini-Huygens et New Horizons.

La nouvelle génération, introduite par le MMRTG pour la mission Mars Science Laboratory, fonctionne avec une jonction dite PbTe/TAGS, c'est-à-dire tellurure de plomb PbTe / tellurures d'antimoine Sb2Te3, de germanium GeTe et d'argent Ag2Te. L'empilage de plusieurs thermo-éléments permet de faire fonctionner chacun d'entre eux dans la plage de température où son rendement (facteur de mérite) est le meilleur.

La puissance électrique fournie par le système décroît au cours du temps pour deux raisons :

Il résulte de cela une évolution de la puissance électrique égale au 1er ordre comme le carré de la puissance thermique fournie par le radionucléide. En termes de puissance électrique tout se passe comme si la période du radionucléide était divisée par deux : Pe = Peo × 0,5(2 × t / Θ) ; avec Pe : la puissance électrique. Ceci renforce l'intérêt des radionucléides à période assez longue comme le plutonium 238 ou le strontium 90 (le 90Sr émetteur bêta pur lié à l'90Y est presque aussi performant que le 238Pu pour un coût nettement inférieur).

Autres modes de conversion

Des technologies plus novatrices reposant sur les convertisseurs thermoïoniques permettraient d'atteindre une efficacité énergétique comprise entre 10 et 20 %, tandis que des expériences recourant à des cellules thermophotovoltaïques, disposées à l'extérieur du générateur à radioisotope classique équipé d'éléments thermoélectriques, pourraient théoriquement permettre d'atteindre des rendements proches de 30 %.

Les générateurs Stirling à radioisotope (GSR, ou SRG en anglais), utilisant un moteur Stirling pour générer le courant électrique, permettraient d'atteindre une efficacité de 23 %, voire davantage en amplifiant le gradient thermique. Le principal inconvénient de ce dispositif est cependant d'avoir des pièces mécaniques en mouvement, ce qui implique de devoir gérer l'usure et les vibrations de ce système. Dans la mesure où cette technologie permettrait néanmoins de multiplier par quatre le rendement des GTR actuels, elle fait actuellement l'objet de recherches significatives menées conjointement par le DOE et la NASA en vue de développer un générateur Stirling à radioisotope avancé (ASRG) qui pourrait être utilisé par la sonde TiME (proposée pour amerrir sur Titan en 2022), actuellement en phase d'évaluation par la NASA pour la mission TSSM dans le cadre de son programme Discovery.

Utilisations

Usage spatial

La puissance reçue du Soleil décroît rapidement — selon une loi en 1/r2 — à mesure qu'on s'éloigne du centre du système solairenote 1, ce qui rend très insuffisants les panneaux solaires sur les sondes spatiales destinées à explorer les planètes lointaines : ces sondes sont donc équipées de générateurs à radioisotope afin de prendre le relais des panneaux solaires au-delà de l'orbite de Mars, comme les sondes Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Galileo, Ulysses, Cassini, ou encore New Horizons. Ces générateurs permettent également aux robots déposés en surface des planètes de fonctionner la nuit, lorsque les panneaux solaires sont dans l'obscurité : les six Apollo Lunar Surface Experiments Packages déposés sur la Lune utilisaient des GTR, tout comme les deux sondes martiennes Viking 1 et 2.

Un générateur thermoélectrique à radioisotope est particulièrement bien adapté à la production d'une alimentation électrique stable, sur une longue durée, et pour maintenir opérationnels pendant plusieurs années les instruments embarqués dans les sondes interplanétaires. Ainsi, le générateur embarqué sur la sonde New Horizons est capable de fournir une alimentation électrique stable de 200 W sur plus de 50 ans. Au bout de deux siècles, la puissance tombe à 100 W. Cependant, en raison du plutonium 238 présent dans un GTR spatial, tout échec au décollage des lanceurs utilisés pour propulser la sonde présente un risque environnemental.

Usage terrestre

Les générateurs à isotope ont été principalement conçus pour l'exploration spatiale, mais l'Union soviétique les a utilisés pour alimenter des phares isolés à l'aide de générateurs au strontium 902,3. Le strontium 90 a une puissance spécifique élevée (environ 2 315 W/kg de strontium pur et d'yttrium à l'équilibre. Il est sensiblement moins cher que les autres radioisotopes traditionnels, et émet presque exclusivement des radiations β, à l'origine d'un fort rayonnement X par Bremsstrahlung dont il est très aisé de se protéger. L'important est surtout d'éviter d'ingurgiter le strontium 90. Cela ne posait pas de problème majeur compte tenu du fait que ces installations étaient destinées aux endroits isolés et peu accessibles, où elles fournissaient une source d'énergie très fiable, mais présentait tout de même des risques potentiels en cas d'incident ou de dégradation de ces matériels sans surveillance rapprochée. Toutefois, à la chute de l'Union soviétique, la plupart des infrastructures ont été laissées à l'abandon et de nombreux RTG ont été pillés, volés ou détruits par la force de la nature (vent/pluie/tempête)2,3. Il est répertorié qu'un voleur a ouvert des compartiments radioactifs3. Trois bûcherons de la région de Tsalendzhikha, en Géorgie, ont trouvé deux sources de chaleur en céramique d'un RTG qui avaient été dépouillées de leur blindage ; deux d'entre eux ont ensuite été hospitalisés pour de graves brûlures dues aux radiations après avoir porté les sources sur le dos. Les unités ont finalement été récupérées et isolées4.

Du millier de générateurs de ce type, utilisant du fluorure de strontium SrF2, voire de titanate de strontium SrTiO3, plus aucun n'est aujourd'hui en état de fonctionner à une puissance acceptable à la suite de l'épuisement du radioisotope. D'après les autorités russes, ils ont tous été retirés2.

Le strontium 90 a une période radioactive de 28,8 ans (ce qui signifie que la moitié du 90Sr subsiste après 28,8 ans, le quart après 57,6 ans, etc.), en se désintégrant par désintégration β pour donner de l'yttrium 90, qui se désintègre à son tour par émission β avec une demi-vie de 64 heures pour finalement donner du zirconium 90 qui, lui, est stable.

Sécurité

Les générateurs à isotope ne fonctionnent pas comme les centrales nucléaires.

Les centrales nucléaires créent l'énergie à partir d'une réaction en chaîne dans laquelle la fission nucléaire d'un atome libère des neutrons, qui à leur tour entraînent la fission d'autres atomes. Cette réaction, si elle n'est pas contrôlée, peut rapidement croître de façon exponentielle et causer de graves accidents, notamment par la fonte du réacteur.

À l'intérieur d'un générateur à isotope, on utilise seulement le rayonnement naturel du matériau radioactif, c'est-à-dire sans réaction en chaîne, ce qui exclut a priori tout scénario catastrophe. Le carburant est de fait consommé de façon lente, cela produit moins d'énergie mais cette production se fait sur une longue période.

Même si le risque de catastrophe majeure est quasi nul, on n'est pas à l'abri d'une contamination radioactive et chimique car tous les isotopes de plutonium et des autres transuraniens sont chimiquement toxiques. Si le lancement d'une sonde spatiale échouait à basse altitude, il y aurait un risque de contamination localisée ; dans la haute atmosphère, une désintégration de la sonde pourrait engendrer une dissémination de particules radioactives. On dénombre plusieurs accidents de ce type, dont trois (le satellite américain Transit 5BN-3 et deux engins soviétiques dont la mission Cosmos 954) ayant conduit à la libération de particules radioactives dans l'atmosphère. Dans les autres cas, aucune contamination n'a pu être détectée et certains générateurs à isotopes ont été récupérés intacts, ayant résisté à la retombée dans l'atmosphère5.

Accident de Nyonoksa en 2019

Selon l'information en août 2019 de l'agence nucléaire russe Rosatom, cinq personnes chargées de « la source d'énergie isotopique » ont été tuées à l'occasion d'une explosion sur une base de lancement de missiles dans le Grand Nord russe, à trente kilomètres de Severodvinsk, dans l'oblast d'Arkhangelsk, lors de l'essai d'un « moteur-fusée à ergols liquides »6. Les autorités n'ont pas relié cet accident à du combustible nucléaire et ont considéré qu'il n'y a pas de contamination radioactive ; en même temps la mairie de Severodvinsk a furtivement indiqué une brève hausse de la radioactivité à 11h50, sans dépasser la limite réglementaire. Les blessés sont soignés dans « un centre médical spécialisé »6.

Selon The Guardian en août 2019, l'accident a conduit à multiplier par vingt le niveau de radioactivité dans les villes avoisinantes pendant une demi-heure. Certains experts indépendants pensent que le missile en cause est celui connu sous l’appellation 9M730 Burevestnik en Russie ou « SSC-X-9 Skyfall » par l'OTAN7.

Notes et références

Notes

  1. Elle est de l'ordre de 1 300 à 1 400 W/m2 au niveau de la Terre, mais n'est plus que de 500 à 700 W/m2 au niveau de l'orbite de Mars et tombe entre 45 et 55 W/m2 au niveau de Jupiter.

Références

  1. (en) « Russia indicates rocket engine exploded in test of mini-nuclear reactor », The Guardian,‎ (lire en ligne [archive], consulté le ).

Annexes

Bibliographie

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.

Articles connexes

Liens externes

Générateur MHD

 
 
 


Un générateur MHD (magnétohydrodynamique) est un convertisseur MHD, qui transforme l'énergie cinétique d'un fluide conducteur directement en électricité.

Le principe de base est fondamentalement le même que pour n'importe quel générateur électrique. Les deux types de générateur utilisent tous deux un inducteur (électroaimant) générant un champ magnétique dans un induit.

  • Dans le cas d'un générateur conventionnel, cet induit est solide : c'est une bobine constituée d'un enroulement de fil métallique.
  • Dans le cas d'un générateur MHD, cet induit est fluide : liquide conducteur (eau salée, métal liquide) ou gaz ionisé (plasma).

Les générateurs MHD n'utilisent donc pas de pièce mécanique mobile, contrairement aux générateurs électriques traditionnels. Le fluide est mis en mouvement dans le champ magnétique, ce qui génère un courant électrique, recueilli aux bornes d'électrodes immergées et commutées à une charge.

MHD generator.png

Principe

 
Force de Laplace.

Les particules chargées en mouvement dans un champ magnétique subissent une force magnétique dite force de Lorentz1 qui dévie leur trajectoire, selon l'équation :

F →   =   q v → ∧ B →

Les vecteurs F, v et B sont perpendiculaires les uns par rapport aux autres et forment un trièdre dans l'espace selon la règle de la main droite.

Le sens de cette force dépend de la charge q, le trièdre est donc direct pour les particules positives et indirect pour les particules négatives.

Un fluide conducteur est composé d'atomes neutres, d'ions positifs et d'ions négatifs. Des électrons libres sont également présents dans le cas d'un fluide de plasma. Lorsqu'il traverse un champ magnétique, les forces de Laplace ont tendance à séparer les charges de signes opposés de part et d'autre du fluide.

Si l'on plonge dans ce fluide des électrodes branchées à une charge, on recueille donc à leurs bornes une différence de potentiel, et donc une tension et par extension une force électromotrice.

Historique

Le concept de générateur MHD a été testé pour la première fois en 18322 par Michael Faraday . Le scientifique eut l'idée d'utiliser la composante verticale naturelle du champ magnétique terrestre, en plongeant dans l'eau de la Tamise, de part et d'autre du pont de Waterloo, des plaques de cuivre reliées par un fil électrique long de 290 mètres. L'équipement de l'époque ne permit cependant pas de mettre en évidence le faible courant électrique généré. C'est en 1851 que son compatriote William Hyde Wollaston mesura, dans l'embouchure saumâtre du fleuve, une tension induite par la marée de la Manche.

Les recherches approfondies de génération d'électricité par MHD ont débuté au XXe siècle avec les travaux du physicien Bela Karlovitz pour le compte de la société Westinghouse de 1938 à 1944. Ce générateur MHD était de type "Hall annulaire" (voir Tuyères) et utilisait un plasma issu de la combustion du gaz naturel ionisé par faisceaux d'électrons. Cette expérience ne fut pas concluante car la conductivité électrique du gaz était aussi limitée que les connaissances de l'époque en physique des plasmas. Une seconde expérience menée en 1961 au même laboratoire, utilisant un liquide composé d'un combustible fossile enrichi en potassium, fut elle un succès avec une puissance générée excédant 10 kW. La même année, une puissance identique fut générée aux laboratoires Avco Everett par le docteur Richard Rosa3, en utilisant de l'argon enrichi par pulvérisation d'une poudre de carbonate de potassium (substance donnant facilement des électrons libres qui augmentent la conductivité électrique du plasma) et ionisé par arcs électriques à 3 000 K.

En 2007, un ensemble d'expériences réalisées aux États-Unis pour le compte de l'armée américaine a permis de générer une puissance supérieure à 1 MW grâce à un fluide simulant une sortie de tuyère d'un avion hypersonique. Ce type d'expérience est susceptible de relancer l'intérêt, notamment militaire, de la MHD, après une mise en sommeil de cette technique pendant de nombreuses années. Cette expérience est susceptible d'avoir également un impact sur la fusion contrôlée (voir Z machine).[réf. nécessaire]

Avantages

Les années 1960 virent un effort international très important en vue de construire les premières centrales MHD électriques industrielles, avec un gaz ionisé à très haute vitesse comme fluide conducteur. Les études préliminaires ont en effet dégagé un certain nombre d'avantages :

Problèmes techniques

Bien qu'un effort mondial considérable ait été entrepris sur la conversion MHD dans la plupart des pays industrialisés dès le début des années 1960, pratiquement toutes les nations impliquées ont rapidement abandonné ces recherches au début des années 1970, face à des obstacles techniques apparemment insurmontables, à l'exception des États-Unis4 et de la Russie qui ont maintenu une veille technologique. La Russie est d'ailleurs le seul pays qui dispose aujourd'hui (depuis 1971) d'une centrale MHD fonctionnelle, délivrant par ce moyen 25 MW.

Cycle ouvert ou fermé

Les années 1960 voient la définition de deux classes principales de fonctionnement :

Tuyères

Régime de fonctionnement

Écoulement continu

La plupart des générateurs MHD industriels doivent fonctionner en régime continu, ils sont en cela analogues à une dynamo : ils génèrent un courant continu qui doit être converti en courant alternatif avant d'être transmis sur le réseau de distribution public. Les générateurs MHD à induction produisent par contre nativement un courant alternatif, analogues aux alternateurs.

Rafale impulsionnelle

La tenue délicate des matériaux face aux très hautes températures du gaz, requises pour un fonctionnement MHD optimal, a souvent restreint l'étude de ces dispositifs sur de courtes durées de fonctionnement. On distingue plusieurs régimes impulsionnels :

  • Typhée : en France dans les années 1960, le CEA construisit directement un tel générateur MHD à Fontenay-aux-Roses. Le prototype Typhée, de type tuyère de Faraday à électrodes segmentées, utilisait de l'hélium ensemencé au césium chauffé à travers un échangeur à barres de tungstène à 3 000 degrés, avec des durées de fonctionnement d'une douzaine de secondes.
  • Pamir : En Russie, l'IVTAN (Institut des hautes températures de Moscou) conçoit depuis les années 1960 des générateurs MHD impulsionnels à moteur-fusée crachant un gaz à travers des tuyères de Faraday et débitant des millions d'ampères, tels que le modèle PAMIR-3U7 sous la direction du Pr. Victor A. Novikov8. Les "machines Pamir" connues également sous le nom de "générateurs MHD de Pavlowsky" sont par ailleurs capables de déclencher des séismes9 et ont été accusées de servir d'arme sismique.

Gaz bitempérature

Chauffé en dessous de 1 500 °C, un gaz peut être utilisé en continu dans une tuyère, mais sa conductivité électrique et le rendement MHD restent faibles. Au-dessus de 5 000 °C, le gaz est cette fois correctement ionisé mais ne peut parcourir la tuyère plus de quelques secondes sous peine de détruire les électrodes.

Afin d'utiliser ces générateurs sur de longues durées, tout en accroissant leurs performances on peut tenter de baisser la température du plasma tout en conservant une conductivité électrique élevée. C’est envisageable en visant une ionisation d'origine thermique, en travaillant sur des plasmas « bitempératures », en état d’ionisation hors d’équilibre, une idée avancée pour la première fois par l'américain Jack L. Kerrebrock10 et le russe A. E. Sheindlin11. Dans ce cas, seul le gaz d'électrons est chauffé à 3 000 °C (température électronique) température suffisante pour que le césium, semence du fluide caloporteur, enrichisse suffisamment le gaz en électrons libres. En maintenant la température à ce niveau, on s’efforce d’abaisser alors au maximum la température du gaz caloporteur, pour que celle-ci devienne compatible avec la température maximale que puissent encaisser les éléments de la boucle fermée. Il était exclu de tenter d’utiliser cette méthode avec des boucles ouvertes, des fluides issus de la combustion d’hydrocarbures. Ceux-ci auraient été en effet obligatoirement riches en CO2, qui interdit toute mise hors d’équilibre, vis-à-vis de cet accroissement non-thermique de la température électronique. En effet la section efficace de collision des électrons avec les molécules de CO2 est importante, des collisions qui, via tous les modes d’excitation de cette molécule : vibration, rotation, suivis d’une désexcitation radiative, jouent un rôle efficace de pompe à chaleur, vis-à-vis du gaz d’électrons. Seule filière envisageable : utiliser comme fluide caloporteur des gaz rares, qui ne possèdent que des états d’excitation électronique, représentant des niveaux d’énergie plus grands, gaz toujours enrichis en semence césium. Parmi les gaz rares, l’hélium était le meilleur candidat, du fait de sa forte conductivité thermique. En cas de succès, ceci aurait été couplé à des projets de réacteurs nucléaires haute température (HTR), dont on estimait à l’époque que les composants pourraient résister à une température de 1 500 °C. Le but était ainsi de réussir à fonctionner avec une température électronique en gros double de celle du gaz caloporteur. Cette situation aurait été analogue à celle qu’on crée dans la vapeur de mercure contenue dans un tube fluorescent.

Hélas, le régime bitempérature s'accommode très mal d'un paramètre de Hall élevé (lorsque le champ magnétique est relativement grand). Or, dilemme : dans un gaz pénétrant à vitesse V dans une tuyère MHD ou règne un champ B, celui-ci est soumis à un champ électrique électromoteur V B. Plus le champ B est élevé, plus ce champ électromoteur est intense, et plus importante sera la fraction de l’énergie qu’on pourra extraire sous forme électrique. Mais plus ce champ B est élevé et plus le plasma devient instable. Le paramètre de Hall est :

β = e B m e v e

Au dénominateur, à côté de la masse de l'électron figure la fréquence de collision électron-gaz. . Pour des conditions d’expérimentation données, on peut calculer la valeur critique de ce paramètre, au-delà de laquelle cette instabilité, dite aussi l'instabilité électrothermique, ou instabilité d'ionisation, découverte en 1962 par le Russe Evgeny Velikhov va se développer très rapidement (en un temps qui est de l’ordre du temps d’établissement de l’ionisation dans le milieu).

À cause de cette instabilité, le générateur MHD Typhée du CEA ne fonctionna pas (il fut conçu d'emblée dans l'optique d'un fonctionnement bitempérature). Mais cette instabilité a pu être maitrisée

Dès 1966 le physicien Jean-Pierre Petit mit en œuvre une première méthode. Elle fut testée avec succès dans un générateur MHD impulsionnel alimenté par un générateur de gaz chaud, à onde de choc (soufflerie à onde de choc appelée, plus communément tube à choc, « shock tube »). Le tube à choc crée une rafale de gaz à très haute température (couramment 10 000 °C pour une rafale de gaz rare, comme l’argon, la pression étant de l’ordre de l’atmosphère et la vitesse de 2 700 m/s). Ces rafales sont de courte durée (50 microsecondes) mais cependant suffisamment longues pour que les tests effectués puissent être considérés comme significatifs, vis-à-vis des phénomènes étudiés. Dans ces conditions expérimentales, l’instabilité se développe très rapidement, en quelques microsecondes. Jean-Pierre Petit a été un de ceux qui ont contribué à mieux cerner les conditions de développement de l’instabilité électrothermique. Pour des conditions gazodynamiques données, on peut calculer la valeur critique du paramètre de Hall au-delà de laquelle l’instabilité se développera. Quand le plasma est dit « coulombien » (Coulomb dominated plasma), c'est-à-dire lorsque la fréquence de collision électron-gaz est dominée par celles des collisions électron-ions, cette valeur critique est voisine de 2. Dans les expériences menées par Jean-Pierre Petit, compte tenu de la valeur du champ magnétique, de 2 tesla, le plasma en entrée de tuyère était a priori très instable (la valeur du paramètre de Hall était largement supérieure à sa valeur critique). Mais, comme il l’avait conjecturé, il s’avéra que la vitesse de développement de l’ionisation pouvait être suffisamment rapide pour que le plasma, passant en régime coulombien, voie sa fréquence de collision électron-gaz croître très vite, et par delà la valeur locale du paramètre de Hall descendre en dessous de la valeur critique. La croissance de cette fréquence de collision est liée aux fortes valeurs des sections efficaces de collision électron ion, qui sont de trois à quatre ordres de grandeur supérieures à celles liées aux collisions entre électrons et espèces neutres. Ainsi put-on réussir à faire fonctionner, en 1966, à l’Institut de Mécanique des Fluides de Marseille, un générateur MHD bitempérature, stable, avec un plasma homogène dans la tuyère MHD. Les premiers essais donnèrent une température électronique de 10 000 °C pour une température de gaz de 6 000 °C, avec une puissance électrique de 2 mégawatts.
Jean-Pierre Petit démontra immédiatement l’authenticité de cet état hors d’équilibre en adjoignant au gaz d’essai 2 % de gaz carbonique. La section efficace de collision, liée au phénomène d’excitation de ces molécules par les électrons étant élevée, ce phénomène absorbait très efficacement tout excès d’énergie détenu par le gaz d’électrons, rendant la température de celui-ci proche de celle du gaz. Ainsi cette situation hors d’équilibre se trouvait-elle annihilée par ces collisions entre électrons et CO2.

Cette expérience réussie fut ignorée pendant de longues années. Cette méthode est actuellement « redécouverte » (2003), comme cela arrive souvent, aux USA, aux Indes12 et au Japon.

Cet aspect permet de comprendre immédiatement pourquoi cet état hors d’équilibre ne peut être envisagé que pour des cycles fermés utilisant des gaz rares, ou des mélanges de gaz rares ensemencés par un alcalin, comme fluides caloporteurs. Dans les « cycles ouverts », fondés sur la combustion d’hydrocarbures, le gaz carbonique sera toujours présent, qui s’opposera immédiatement toute tentative d’établissement d’une situation bitempérature, celui-ci jouant le rôle de puits de chaleur, ramenant la température du gaz d’électrons à une valeur proche de celle des espèces lourdes.

Des essais ultérieurs, dans les jours qui suivirent, permirent d’abaisser la température du gaz à 4 000 °C. Ces résultats furent présentés au colloque international de Varsovie de 196613,14,15.

Mais il s’avéra impossible de descendre en dessous de cette valeur, qui restait bien au-delà des possibilités technologiques, car la vitesse de développement de l’ionisation, ayant un rôle stabilisateur, n’était alors pas assez grande, et l’instabilité d’ionisation prenait le dessus. Cette contrainte limita la portée de cette expérience.

Jean-Pierre Petit mit alors en œuvre au début des années 1980, dans un laboratoire de fortune installé dans une des caves de l’observatoire de Marseille une seconde méthode beaucoup plus prometteuse. Pour bien la comprendre il est nécessaire d’écrire l’expression (matricielle) de la conductivité électrique, avec effet Hall :

σ = σ s ⏟ conductivité électrique scalaire [ 1 1 + β 2 − β 1 + β 2 β 1 + β 2 1 1 + β 2 ] β = e B m e v e

Quand le paramètre de Hall est élevé, cette conductivité est proche de :

β ≫ 1 σ ≈ σ s [ 1 β 2 − 1 β 1 β 1 β 2 ] σ / / ≈ σ s 1 β 2 σ ⊥ ≈ σ s 1 β

On comprend au passage l’aspect géométrique de l’effet Hall, lorsque ce paramètre est élevé. Soumettons le plasma à un champ électromoteur E. Le vecteur densité de courant J fera avec ce vecteur champ E un angle théta, correspondant aux expressions et à la figure ci-après :

Vecteur densite de courant.jpg

Si on veut créer un effet Hall important, c'est-à-dire une forte déviation du vecteur densité de courant J, vis-à-vis d’un champ électromoteur E, dans une situation bitempérature : l’instabilité d’ionisation, turbulence d’ionisation, contrariera ce projet aussitôt dès que la valeur du paramètre de Hall excédera la valeur critique13. Pour s’en convaincre, il suffit de jeter un œil à l’animation présente dans la page consacrée à l'instabilité électrothermique, construite à partir d’illustrations présentes dans la thèse de doctorat de J.-P. Petit16 issues de résultats de calculs russes de 1968. Celle-ci montre comment les lignes de courant électrique se distordent et se resserrent selon des directions qui ne correspondent pas au schéma souhaité, qu’il s’agisse d’expérience de conversion MHD axées sur la production d’électricité ou d’accélération d’un plasma bitempérature. L’accroissement en ces régions de la densité de courant crée un feed back positif, c'est-à-dire un accroissement de la valeur locale de la conductivité électrique, phénomène de réponse très non-linéaire. Le courant tend à circuler dans ces strates plus ionisées, et non dans les directions souhaitées. Le plasma devient inhomogène et offre l’allure caractéristique d’un « mille-feuille ».

En revenant aux expressions ci-dessus, qui montrent que les deux conductivités, parallèle et transverse, se trouvent réduites quand la valeur locale du paramètre de Hall est élevée, Petit envisagea d’utiliser une distribution inhomogène de champ magnétique. Il conjectura que les régions à B fort pourraient se comporter comme des sortes de gaines isolantes, en tendant à canaliser les streamers de courant dans des allées où le champ était plus faible, c'est-à-dire la conductivité électrique plus élevées. L’expérience confirma cette intuition. Par ailleurs, en concentrant le flux de courant dans ces allées, on obtenait un accroissement de la densité électronique et de la conductivité électrique dans ces régions, donc un accroissement de la fréquence de collision, par passage en régime coulombien et, in fine, une annihilation de l’instabilité de Vélikhov17.

Cette méthode est actuellement la seule qui permette de s’affranchir des effets catastrophiques de l’instabilité de Velikhov dans tout montage MHD bitempérature.

Dans le cadre général des plasmas froids soumis à de forts champs magnétiques, cette problématique est également au cœur de l'essor ou de l'abandon à court terme des applications propulsives hypersoniques de la MHD, connues sous le nom de magnétoaérodynamique.

Notes et références

Notes

Références

Bibliographie

Annexes

Articles connexes

Liens externes

Moteur à air comprimé

 
 
 
 
Moteur pneumatique d’une meuleuse d’angle

Un moteur à air comprimé est un type de moteur tirant sa puissance mécanique de la détente d'air comprimé avant l'entrée dans le moteur.

Un moteur à combustion interne tire aussi sa puissance mécanique de la détente d'air comprimé, mais l'air est entré non comprimé dans le moteur à combustion interne. En effet, l'air agissant sur un piston a été comprimé par une combustion dans une phase précédente du processus cyclique de fonctionnement du moteur à combustion interne.

Classement

De manière générale, on extrait un travail de l'air comprimé (sous-entendu : air avec une pression plus grande que la pression de l'air ambiant) en utilisant une paroi (le piston) soumise d'un coté à la pression de l'air ambiant, et de l'autre coté à la pression de l'air comprimé sur une surface S. La force engendrée sur le piston par la différence de pression Δp est alors :

F = Δp × S 

Si la force engendrée est supérieure à la résistance au mouvement du piston, ledit piston va se déplacer et générer ainsi un travail mécanique.

On peut classifier les différents moteurs possibles selon la trajectoire de déplacement du piston et la manière de transmettre le mouvement.

Mouvement linéaire

 
Principe d’un vérin rotatif à double effet.

Ces moteurs pneumatiques sont des vérins pneumatiques ou à tiges, contraints mécaniquement de manière à permettre seulement un déplacement linéaire.

Les vérins « simple effet » ne comportent qu’une chambre et le retour du piston à sa position initiale est assuré par un ressort. Les vérins double-effet comportent deux chambres, de part et d’autre du piston, qui sont alternativement alimentées en air comprimé ou mises à l’échappement.

Ces vérins permettent d’obtenir des vitesses de déplacement importantes qui, pour être obtenues nécessitent le dimensionnement correct des valves d’admission et d’échappement et de l’alimentation en air comprimé.

Le déplacement linéaire peut être transformé en une rotation d’angle limité par un dispositif mécanique.

Mouvement de rotation

Ces moteurs peuvent être à turbine ou à pistons, assurant la rotation continue d’un axe, pouvant se substituer aux moteurs électriques, particulièrement pour des applications qui nécessitent une grande souplesse de fonctionnement, et notamment un couple élevé à vitesse faible ou nulle. Du fait de l'absence d'étincelles ce type de moteur est très utilisé dans tous les milieux potentiellement détonants (garage automobile par exemple)

Applications

Démarreur des moteurs de puissance

Par rapport aux démarreurs électriques, les démarreurs à air ont un rapport puissance/poids plus élevé.

Les démarreurs électriques
leur câblage peut devenir excessivement chauds s'il faut plus de temps que prévu pour démarrer le moteur, tandis que les démarreurs à air peuvent fonctionner aussi longtemps que dure leur alimentation en air comprimé.
Les démarreurs à air
beaucoup plus simples et compatibles avec les moteurs à turbine. Ils sont donc utilisés sur de nombreux modèles de gros turbopropulseurs installés sur des avions commerciaux et militaires.

Véhicules à air comprimé

 
Tramway Mékarski à la gare de l'Est (Paris) vers 1900.

La détente de l'air comprimé a été utilisée très tôt comme énergie de propulsion pour divers véhicules. Si l'air stocké après compression ne contient pas de polluant, et si le moteur n'a pas besoin de lubrifiant, ce type de moteur n'émet en effet ni fumées, ni gaz polluant et est plus silencieux qu’un moteur à explosion.

Les premières applications pratiques de véhicules à moteur à air comprimé remontent au XIXe siècle, à l'époque du développement des chemins de fer où dans certaines situations, comme les réseaux miniers et le creusement des tunnels, il était nécessaire d'éviter les pollutions et les risques d'incendie inhérents à la locomotive à vapeur.
On peut aussi citer les tramways du système Mékarski mis en service en 1879 à Nantes puis en région Parisienne et qui y circulèrent pendant 40 ans.

De même, le sous-marin français Le Plongeur utilisait un moteur à air comprimé pour la navigation sous marine, faisant de lui le premier sous-marin au monde à être propulsé par un moteur en 1863.

La mise en œuvre de ce moteur pour l'automobile a fait aussi l'objet de quelques réalisations. Moins polluant, plus durable1, et surtout moins lourd que le véhicule électrique (à cause des composants des batteries et du poids des accumulateurs au plomb de l'époque), mais souffrant aussi d'une autonomie limitée, le concept semble oublié du monde « écologique » et bénéficie pour l'instant de peu d'attention des pouvoirs publics pour sa promotion et son développement.

Autres applications

L'énergie du marteau-piqueur professionnel est, depuis l'origine, l'air comprimé. Des moteurs à air comprimé sont largement utilisés dans le fonctionnement d'appareils d'ateliers ou de laboratoires : visseuses, perceuses, cloueurs, fraise de dentiste, etc.

La transmission pneumatique de l'information a été utilisée depuis très longtemps, depuis les premiers navires à vapeur, par exemple, jusque dans les ascenseurs, les camions ou les avions. La politique du tout électrique a conduit à l’abandon progressif de ce moyen de transmission au début des années 2000.
La transmission pneumatique de petits objets et de documents a également été largement utilisée depuis 2 siècles et il existe encore de nombreux exemples de tubes pneumatiques2 dans les banques, les supermarchés, les péages autoroutiers, etc.

L'air comprimé a également été utilisé sur des chaînes de montage de matériels horlogers, avec des cellules logiques pneumatiques ; l'air issu des cellules sert en outre à mettre le tunnel de la chaîne en légère pression, évitant ainsi les dépôts de poussière sur les éléments en cours d'assemblage.

Développement de nouveaux moteurs

Les développements récents de moteurs à air comprimé concernent principalement des moteurs devant servir à la propulsion de véhicules à air comprimé.

Deux entreprises ont réalisé de tels développements, l'une coréenne Energine3, l'autre française MDI4 dirigée par le motoriste Guy Nègre.
Un nouveau venu, Régis Munoz, vient d'inventer un moteur rotatif qui fonctionne également avec de l'air comprimé[réf. souhaitée]. Ce moteur rotatif peut fonctionner en moteur roue comme un moteur électrique.

Les ingénieurs de la société Energine ont pu réaliser, à partir d'une Daewoo Matiz, un prototype hybride moteur électrique/moteur à air comprimé (PHEV, Pneumatic Hybrid Electric Vehicle). Le moteur à air comprimé sert en fait à entraîner un alternateur qui fournit l'électricité prolongeant l'autonomie du véhicule. L'automobile est fonctionnelle, de nombreux journalistes ont pu l'essayer pour en témoigner. L’aspect négatif restant l'autonomie restreinte par les capacités de stockage des batteries électriques actuelles.

 
One Flow Air, prototype d'automobile propulsée par un moteur à air comprimé, développé par la société MDI.

Quant à la seconde entreprise, française, sa technologie diffère. Le moteur à air comprimé est le moteur principal, secondé en cas de besoin de puissance supplémentaire par un moto-alternateur[réf. souhaitée]. La mise au point de l'ensemble continue. Les applications possibles sont nombreuses (automobiles, marines, industrielles, etc.).

En 2004 des chercheurs Québécois proposent la Quasiturbine qui s'inspire de la turbine, perfectionne le piston et améliore le moteur rotatif. Un prototype de Go-kart à air comprimé satisfaisant, bien que peu puissant et toujours d’autonomie limitée, a pu ainsi être présenté en automne 2004 à Montréal, suivi d'un prototype de petit véhicule.

En 2006-2007 un groupe de chercheurs français a tenté de produire des véhicules à air comprimé écologiques, à assistance pneumatique: les "K'Airmobiles". Le projet fut abandonné en 2009, faute de trouver les soutiens financiers, mais surtout à la suite des résultats expérimentaux démontrant la difficulté d'utiliser l'air comprimé dans un système embarqué, du fait de la faible capacité énergétique de l'air comprimé et des importantes pertes thermodynamiques rencontrées lors de son expansion, ne permettant qu'une autonomie inférieure à 10 km dans le meilleur des cas (avec un réservoir A.C. de 300 L à 240 bars).

En 2010, grâce à un groupe d'investisseurs nord américains, les brevets pour le moteur-turbine K'Air ayant finalement pu être enregistrés, le projet a été réinitialisé[réf. souhaitée] mais cette fois en vue de la construction d'une unité de production d'énergie verte (éolien + solaire).

Un autre projet d’étude a amené l’Université de Reims à construire l’« Air-Bike5 ». Bien qu’opérationnel, cet engin présente un sérieux handicap du fait de l'énorme dimension du réservoir et de son autonomie réduite.

Au début d'année 2014, le groupe Tata Motors annonce un modèle, la Mini Cat6 fonctionnant entièrement à l'air comprimé. Mais le suicide du Directeur Général de Tata Motors, Karl Slym, est rendu public le , à Bangkok, alors qu’il y séjournait pour participer à une réunion du Conseil d’Administration de Tata Motors Thailand7 ; depuis, il n'y a eu aucune nouvelle annonce concernant ce véhicule.

Notes et références

  1. L'étrange suicide du DG de Tata Motors à Bangkok [archive], lemonde.fr du le 27 janvier 2014, consulté le 9 juin 2016.

Annexes

Articles connexes

Liens externes