Imprimer
Catégorie : Les Armes
Affichages : 332

 

Poison

 
GHS-pictogram-skull.svg

Les poisons sont, en biologie, des substances qui provoquent des blessures, des maladies ou la mort d'organismes par une réaction chimique, à l'échelle moléculaire. Cette définition exclut les agents physiques, même de petite taille (un caillot, une bulle d'air dans le sang, un courant électrique, une radiation, etc.). On différencie la pénétration volontaire de substances toxiques dites poisons (intoxication), de la production interne de toxines (intoxination) mais la distinction entre ces deux termes n'est pas toujours observée, même parmi les scientifiques.

Selon l'observation de Paracelse, considéré comme le fondateur de la toxicologie, « Toutes les choses sont poison, et rien n’est sans poison ; seule la dose fait qu’une chose n’est pas poison », y compris pour les plus nécessaires, comme l'eau, l'oxygène, les vitamines. A contrario, des substances considérées comme poison au-delà de certaines doses, peuvent avoir des propriétés pharmacologiques intéressantes. Par exemple, à faibles doses, l'oxyde d'arsenic peut guérir des lupus[réf. nécessaire]. La plupart des médicaments anti-infectieux efficaces, tels les antibiotiques, sont des poisons et leur posologie est calculée afin de détruire l'agent infectieux sans mettre en danger la vie du patient. Les contre-poisons peuvent également être dangereux, mais leur antagonisme annule les effets toxiques de chacune des deux molécules.

On réserve généralement l'appellation de poison à ceux qui agissent à dose très faible (rapport massique inférieur au millième ou au millionième).

L'étude des symptômes, des mécanismes d'action, des traitements et du diagnostic des poisons biologiques est appelée la toxicologie.

La chimie a généralisé la notion de poison en parlant de poison de catalyseur : c'est une substance qui bloque ou inhibe une réaction, le plus souvent en se liant à un catalyseur plus fortement que le réactif normal. Par exemple, les essences contenaient du plomb qui bloquait rapidement le fonctionnement des pots d'échappement catalytiques, ce qui a obligé à reformuler les essences.

La grande unité des processus utilisés par les espèces vivantes fait que beaucoup de poisons ont des effets sur de nombreuses espèces, même si la sensibilité est très variable d'une espèce à une autre.

La plupart des espèces produisent des poisons pour elles-mêmes, et s'organisent en conséquence.

Étymologie

Le mot poison est issu du latin potionem, accusatif de potionis, « action de boire », d'où par métonymie « breuvage, boisson ». Par spécialisation, le mot a désigné un breuvage médicinal et un breuvage empoisonné, un philtre magique1. Le sens moderne de boisson suspecte ou empoisonnée se dégage au XIIe siècle1 mais son étymologie rappelle la maxime de Paracelse « Toutes les choses sont poison, et rien n’est sans poison ; seule la dose fait qu’une chose n’est pas poison »2, principe de base de la toxicologie mais scientifiquement caduque depuis notamment les recherches sur les perturbateurs endocriniens qui montrent que ces molécules ont des effets plus importants à petites doses qu'à des concentrations plus fortes3.

Grandes catégories

On distingue trois grandes catégories de poisons :

Le poison peut être gazeux, liquide ou solide. Il peut agir par contact (absorption cutanée), par inhalation, par ingestion ou injection. Il existe des poisons naturels (gaz, minéraux, alcaloïdes, veninsetc.) et des poisons créés par l'homme.

On distingue aussi les toxiques lésionnels (paraquat, colchicineetc.) des toxiques fonctionnels (antiarythmiques, antidépresseurs, tricycliques, barbituriques, carbamates, chloroquine, digitaline, théophyllineetc.).

Classes

  • Neurotoxiques (Inhibiteurs de la jonction synaptique…) : les neurotoxiques agissent sur l'influx nerveux, empêchent la coordination motrice et bloquent certains muscles essentiels (muscles respiratoires, cœur). Les plus connus sont le curare, les neurotoxines, et les gaz innervants ; de nombreux insecticides appartiennent à cette classe. Le plus souvent, leur cible est l'interface entre la cellule nerveuse et la cellule suivante (nerveuse ou musculaire).
  • Poisons nécrosants et poisons hémolysants : les cellules vivantes sont des poches pleines à craquer, qui ne tiennent que grâce à une armature, un filet composé de lipides et de protéines que la cellule entretient en permanence. Certains poisons détruisent ce filet, soit en catalysant et accélérant sa décomposition, soit en prenant la place de certains éléments mais sans assurer la solidité de l'ensemble.
  • Inhibiteur de la synthèse d'adénosine triphosphate : les cellules vivantes fonctionnent avec l'énergie de l'ATP, fournie par les mitochondries. Les cyanures bloquent la synthèse d'ATP, ce qui prive en quelques secondes ces cellules de toute énergie, arrêtant toutes les synthèses et toute activité motrice, et provoquant rapidement la mort.
  • Inhibiteur de la jonction musculaire : le chlorure de potassium provoque un arrêt du cœur en empêchant la création du potentiel cellulaire nécessaire à la contraction des muscles ; ce dernier composé est utilisé dans certains États des États-Unis pour exécuter les condamnés à mort.
  • Poison cumulatif : un poison peut également agir lentement par accumulation. Par exemple, le mercure, le plomb et les autres métaux lourds, le benzène et d'autres composés aromatiques.
  • Poisons mutagènes et poisons allergènes : l'amiante (provoquant des cancers des poumons et de la plèvre), de nombreuses poussières (sciure de bois, poussières de terre et de charbon), les allergènes, ont des effets nocifs dont la survenue n'est pas certaine, mais plus ou moins probable selon la dose et la fréquence d'exposition, et selon la sensibilité de la personne.

Beaucoup de substances considérées comme des poisons sont en fait des précurseurs de poisons : c'est le corps lui-même qui les transforme en poisons. Par exemple, le méthanol n'est pas toxique, mais est transformé en méthanal dans le foie.

(Voir aussi les types de toxines dans l'article Venin).

Types de dommages

Le contact ou l'absorption d'un poison peut provoquer des dommages :

  • irréversibles (y compris la mort), ou bien temporaires ;
  • partiels et localisés, ou bien généralisés ;
  • rapidement, ou au contraire lentement ;
  • avec certitude, ou bien avec une certaine probabilité (croissante avec la dose).

(Voir aussi les types de dommages dans l'article Venin).

Résistance aux poisons

Les poisons sont tellement présents que la vie serait impossible sans mécanismes antipoisons. Différentes solutions sont adoptées par les êtres vivants :

  • l'excrétion, c'est-à-dire l'évacuation (urine, sueur, respiration, etc.). Ce mécanisme est très utilisé pour les poisons d'origine interne, présents par synthèse et en quantité importante (urée, oxygène pour les plantes ou gaz carbonique pour les animaux, etc.) ;
  • la destruction chimique (mais, on l'a vu, le remède peut être pire que le mal, si les produits de la destruction sont plus toxiques). La plupart des organismes disposent d'un organe spécialisé dans le traitement des molécules entrantes (comme le foie). Cela permet de réduire la concentration dans des proportions parfois suffisantes pour tenir le choc ;
  • la concentration dans un organe chimiquement peu mobilisé (cellules de stockage adipeux, coquilles ou os) ;
  • l'auto-mutilation : plutôt que d'avoir un organe performant mais sensible à un certain poison, l'organisme préfère s'en passer en utilisant un système moins efficace mais plus adapté au contexte (ce qui ne veut pas dire plus robuste dans l'absolu). C'est le mécanisme de certaines résistances des microbes aux antibiotiques.

La mithridatisation consiste à ingérer des doses croissantes d'un produit toxique dans le but d'acquérir une insensibilité ou une résistance vis-à-vis de celui-ci. Le roi de l'Antiquité Mithridate procédait ainsi afin de prévenir les risques liés à un empoisonnement dont il craignait d'être la victime.

Les effets du poison varient aussi avec la résistance de la victime.

Période de latence

Certains poisons peuvent avoir un effet foudroyant, agissant en quelques minutes, d'autres en quelques heures, d'autres en quelques jours, ou à plusieurs semaines, enfin certains agissant à long terme (sur six mois à plus d'une année, avec une longue période de latence — par exemple avec l'amiante, en raison des très longs délais de développement du cancer de la plèvre (mésothéliome). Cette dernière période pour l'amiante dépasse nettement les vingt ans, dans la majorité des cas de mésothéliomes.

La période de latence — désignant la période sans symptômes ou le temps moyen au bout duquel le poison fait son effet —, peut être très variable d'un poison à l'autre et peut dépendre d'autres facteurs (résistance au poison…), la plupart des poisons ne faisant pas effet immédiatement, dans la mesure où ils doivent d'abord être assimilés par l'organisme.

Doses létales

Les doses létales peuvent être très variables, variant de quantités supérieures au gramme/kilogramme au microgramme/kilogramme pour la toxine botulique, poison naturel le plus toxique4.

En toxicologie, la dose létale médiane (DL50), dose par kilogramme de poids frais, représente la dose qui entraîne la mort de la moitié des êtres humains ou des organismes vivants présents dans un échantillon.

Détection

Les techniques utilisées pour détecter les poisons dépendent de leur nature. Les analyses physico-chimiques peuvent notamment utiliser les méthodes électrochimiques, chromatographiques et spectrométriques, par exemple une chromatographie couplée à une spectrométrie de masse.

Usage

Dans la nature

Sans poisons, la vie telle que nous la connaissons n'existerait pas. Toutes les espèces vivantes usent largement de poisons, et certaines plus que d'autres :

  • Pour se défendre contre les micro-organismes, beaucoup d'espèces sécrètent des antibiotiques, du lysozyme. Ces éléments font plus ou moins partie du système immunitaire.
  • Pour se prémunir des espèces prédatrices. Il est important de faire la différence entre « vénéneux » et « venimeux » :
    • Le terme vénéneux s'applique soit aux plantes toxiques (que ce soit par contact, comme le Sumac, ou par ingestion comme certains champignons), soit à la chair toxique de certains animaux (comme le Fugu).
    • Le terme venimeux s'applique uniquement aux animaux sécrétant du venin et pouvant donc l'injecter à une proie ou un attaquant par piqûre (abeilles), morsure (serpents venimeux) ou encore par simple contact (dendrobatidés).
  • Pour défendre leur territoire et leurs source d'aliments contre la concurrence (plantes désherbantes, mycotoxines).
  • Pour obtenir une capacité offensive beaucoup plus grande et plus économique que la force physique brute, souvent dans le cadre de la chasse (serpents venimeux).

Par l'homme (hors crimes)

Les poisons sont employés par l'homme depuis des temps immémoriaux pour des activités de pêche, de chasse, ou de guerre (ex : curares).

En France, bien avant de parler de « polluants », à la fin du XIXe siècle (pour le phosphore blanc en 1892 par exemple5) et au tout début du XXe siècle, sous l'influence des hygiénistes et médecins, on parle de « poisons industriels »6,7 dont on commence à vouloir légalement protéger les travailleurs8, poisons qui affectent souvent mortellement les travailleurs des usines, des champs et moindrement, mais aussi les habitants dont les maisons sont proches des usines de la carbochimie et de la chimie ou proches des usines utilisant de grandes quantités de produits toxiques9 qui affectent notamment les poumons des personnes exposées10.

Après la révolution industrielle, l'homme répand à grande échelle des poisons souvent avec une véritable volonté et une conscience des buts poursuivis (mais parfois, en revanche, une véritable inconscience des conséquences) :

  • éliminer des parasites (poux, moustiques) ;
  • éliminer des concurrents (insectes et champignons ravageurs des cultures, « mauvaises herbes ») ;
  • se soigner, ou se droguer (le terme anglais (en) drug indique bien la proximité des phénomènes), ou encore se doper ;
  • sélectionner des espèces, en associant la résistance au poison avec un caractère utile ;
  • tuer, faire la guerre : armes NBC ;
  • etc.

Dans le cadre de crimes

Dans ce cadre, on emploie parfois l'expression bouillon d’onze heures. Les différents crimes peuvent être, sans exhaustivité :

  • assassinats politiques (par exemple, assassinats d'opposants politiques) ;
  • assassinats de concurrents (politiques, économiques, etc.) ;
  • assassinats de personnes gênantes (de témoins…) ;
  • assassinats par intérêts (familiaux dans le cadre de transmissions de successions, pour bénéficier de l'héritage, etc.) ;
  • assassinats haineux, passionnels, etc. ;
  • pour pouvoir se séparer de son conjoint, avant la loi sur le divorce, adoptée en France, le 27 juillet 1884 ;
  • dans le cadre de crimes de masses (dans le cadre du génocide des Juifs par les Nazis pratiqué au sein des camps d'extermination, à l'aide du Zyklon B qui dégage du cyanure d'hydrogène…) ;
  • pour tester sur des êtres humains des nouvelles substances ou de nouveaux poisons. Les cas les plus connus sont :
    • expérimentations criminelles, en particulier de poisons biologiques, au sein de l'unité japonaise 731, de 1932 à 1945, à Kizu, au Shanxi et en Mandchourie,
    • expérimentation de poisons sur les détenus par la Guépéou, dès 1938, à l'instigation de Lavrenti Beria,
    • expérimentation criminelles de médecins nazis sur les détenus dans certains camps de concentration.
  • etc.

Empoisonnements célèbres

  • Socrate : Accusé de pervertir les jeunes Athéniens par son idéologie, condamné à mort par l'aréopage d'Athènes, a bu une décoction à base de ciguë, assisté de ses servant(e)s (Platon en fait le récit dans le Phédon).
  • Démosthène, homme d’État athénien, se suicide par empoisonnement.
  • Rome, en , empoisonnements de masse : Sous les consuls C. Valerius Potitus et M. Claudius Marcellus, de nombreux citoyens de Rome meurent les uns après les autres, empoisonnés par leurs femmes. Une vingtaine de matrones sont prises en train de fabriquer du poison et doivent l'avaler. Cent soixante-dix autres sont condamnées11.
  • Cléopâtre VII : Se serait suicidée soit en se laissant mordre par des aspics, soit en se piquant avec une aiguille enduite de poison.
  • Britannicus.
  • Agnès Sorel.
  • Napoléon Bonaparte : Une théorie prévalait il y a encore peu selon laquelle il aurait été assassiné à l'arsenic, car le FBI avait découvert en 1961 dans ses cheveux un taux d'arsenic « compatible avec un empoisonnement » : la légende veut que Napoléon ait succombé à un empoisonnement par un proche. La théorie actuelle dit que l'arsenic provenait plutôt d'un produit de traitement des cheveux, et que Napoléon serait en fait décédé d'un saignement gastrique provoqué par un cancer de l'estomac, assez cohérent avec ses antécédents familiaux et les témoignages de ses proches.
  • Charles Darwin : Se serait empoisonné par automédication d'une solution contenant 1 % d'arsenic, bien que ce ne soit qu'une rumeur (en fait, il aurait souffert, pendant plus de vingt ans, de la maladie de Chagas, une maladie et infection due au parasite Trypanosoma cruzi (trypanosomiase américaine) causée par des punaises hémophages du genre Triatoma, Darwin ayant été lui-même piqué, en , au Chili, par une punaise susceptible de transmettre cette infection).
  • Raspoutine : Résista à une dose massive de cyanure (en raison de la réaction de ce cyanure avec le sucre des gâteaux qui le contenaient), et qui fut assassiné plus brutalement de plusieurs balles.
  • Alan Turing : Se serait suicidé en peignant une pomme de cyanure qu'il mordit ensuite.
  • Plusieurs personnalités liées au régime nazi :
  • Georgi Markov (Georgi Ivanov Markov) : Dissident bulgare, assassiné à Londres, en , par des agents de la police secrète bulgare, avec un parapluie spécial (surnommé « parapluie bulgare »), qui lui a projeté dans le mollet une bille constituée d'un alliage de platine et d'iridium, recouvert de ricine.
  • Munir Said Thalib : Un éminent défenseur indonésien des droits de l’Homme, meurt le après avoir ingurgité de l’arsenic dans un avion entre Jakarta et Amsterdam.
  • Viktor Iouchtchenko : Président de la République d'Ukraine depuis le , chef de la coalition politique « Notre Ukraine » (Nacha Ukrayina) depuis 2002, dont le visage est resté grêlé par l’acné chlorique, est empoisonné en 2004, à la tétrachlorodibenzodioxine (TCDD) ou « dioxine Seveso », lors de la campagne électorale qui l’oppose à Viktor Ianoukovytch.
  • Alexandre Litvinenko : Ex-espion russe émigré en Angleterre, a été empoisonné au polonium 210 en .
  • Affaire de la Josacine empoisonnée : En 1994, Jean-Marc Deperrois a été condamné par la cour d'assises de Seine-Maritime pour le décès d'une enfant de huit ans, Émilie Tanay, empoisonnée au cyanure. Le sirop antibiotique (Josacine) de la petite s'est avéré contenir un cyanure ancien et très dégradé, dont on n'a jamais trouvé la provenance. L'enquête a émis l'hypothèse que l'enfant n'était pas la cible prévue du poison, et c'est sur cette supposition rocambolesque que le jugement a été rendu. Mais quelques années après, un journaliste du Monde a démontré qu'il s'agissait vraisemblablement d'un dramatique accident domestique. L'enfant aurait probablement bu du cyanure trouvé dans une cuisine dont le propriétaire aurait ensuite empoisonné le médicament pour s'affranchir de toute responsabilité12.
  • Kim Jong-nam : opposant à son demi-frère Kim Jong-un dirigeant de la Corée du Nord, a été empoisonné à l'agent VX sur l'aéroport de Kuala-Lumpur en 2017.
  • Les affaires Lafarge et Besnard sont, en France, les deux plus célèbres affaires d'empoisonnement.

Empoisonneurs célèbres

  • Agrippine la Jeune, fille de Germanicus et mère de Néron, fait assassiner son second mari Passienus Crispus, immensément riche, pour se lier à l’empereur Claude, son oncle. Puis elle aurait fait empoisonner l’empereur Claude, le 13 octobre 54, à l'aide d'une empoisonneuse nommée Locuste (selon l'auteur romain Suétone, et son ouvrage Vies des douze Césars).
  • Néron, fils d'Agrippine, fait empoisonner son frère Britannicus (selon l'auteur romain Suétone, et son ouvrage Vies des douze Césars).
  • Charles II de Navarre, dit Charles le Mauvais (mais la liste de ses victimes est sujette à caution13).
  • La famille Borgia :
    • le pape Alexandre VI, Roderic de Borgia (bien que cela soit une rumeur). Lui-même serait mort en ayant bu du vin empoisonné ;
    • César, fils de Rodéric Borgia.
  • Catherine Deshayes, dite La Voisin (voir Affaire des poisons).
  • Marie Lafarge : fut accusée d'avoir empoisonné son époux. Condamnée en 1840 aux travaux forcés à perpétuité, elle fut libérée mais cette affaire demeure une énigme judiciaire : l'époux serait en fait probablement mort de la typhoïde.
  • L'Affaire des poisons : affaire célèbre à l'époque d'une série d'empoisonnements à Paris et à la cour royale, impliquant sous Louis XIV, Madame de Montespan, la Marquise de Brinvilliers
  • Hélène Jégado : condamnée à mort en 1851 à Rennes pour 3 meurtres et 3 tentatives. Soupçonnée d'environ 36 empoisonnements à l'arsenic.
  • Marie Besnard : surnommée « l'empoisonneuse de Loudun ». Elle fut accusée d'avoir empoisonné douze personnes à l'arsenic, dans un but purement successoral et financier. Elle fut acquittée, et certains scientifiques mettent encore aujourd'hui sa culpabilité en doute. Selon certains :
    • les méthodes de mesure de taux d'arsenic, de l'époque, sur les squelettes exhumés n'étaient pas fiables ;
    • ces squelettes auraient pu être contaminés par l'arsenic des désherbants, employés dans les cimetières, dans les années 1950 ;
    • la plupart des personnes qui ont fait un don à Marie Besnard étaient parvenues à un âge avancé lors de leur décès ;
    • les montants de ces dons étaient en général très petits.

Empoisonnement dans la littérature

  • Le poison tient une place importante dans plusieurs pièces de William Shakespeare : Hamlet ou Roméo et Juliette par exemple.
  • Phèdre, personnage mythique ayant inspiré les tragédies d'Euripide, Sénèque, Racine, se suicide par empoisonnement.
  • Balzac dans Sur Catherine de Médicis : « Il est certain que pendant le seizième siècle, dans les années qui le précédèrent et le suivirent, l’empoisonnement était arrivé à une perfection inconnue à la chimie moderne et que l’histoire a constatée. L’Italie, berceau des sciences modernes, fut, à cette époque, inventrice et maîtresse de ces secrets dont plusieurs se perdirent. […] À Florence, cet art horrible était à un si haut point, qu’une femme partageant une pêche avec un duc, en se servant d’une lame d’or dont un côté seulement était empoisonné, mangeait la moitié saine et donnait la mort avec l’autre. Une paire de gants parfumés infiltrait par les pores une maladie mortelle. On mettait le poison dans un bouquet de roses naturelles dont la seule senteur une fois respirée donnait la mort. Don Juan d’Autriche fut, dit-on, empoisonné par une paire de bottes14. »
  • Dans la pièce Lucrèce Borgia de Victor Hugo, à la fin du repas (acte III, scène 2) le personnage de Lucrèce annonce à ses invités qu'elle les a empoisonnés15.
  • Gustave Flaubert décrit le suicide à l'arsenic du personnage principal dans le roman Madame Bovary.
  • Dans le roman Le Nom de la rose d'Umberto Eco, le personnage de Jorge de Burgos fait usage d'un poison.
  • Dans Le Comte de Monte-Cristo, Valentine de Villefort est empoisonnée par sa belle-mère qui veut faire main-basse sur l'héritage du grand-père (et de la grand-mère) de Valentine, mais celui-ci mithridatisait Valentine depuis quelques années et elle survit.
  • Les empoisonnements foisonnent dans les romans policiers: Le Miroir se brisa, La Mort dans les nuages, Drame en trois actes, Le Signe des quatre, les Dix petits nègres, etc.
  • Dans La Geste des Princes-Démons, cycle de science-fiction en 5 tomes écrit par l'écrivain américain Jack Vance, les Sarkoys originaires de la planète Sarkovy sont des maîtres empoisonneurs qui exercent leurs talents contre rétribution. Leur poison préféré est le kluthe, qui tue par simple contact, rapidement ou très lentement en fonction du dosage choisi. Une scène d'empoisonnement au kluthe est relatée dans le premier épisode de la série, Le Prince des étoiles.
  • La recette des Borgia rapportée par Voltaire : « La bave d'un cochon rendu enragé en le suspendant par les pieds, la tête en bas, et en le battant longtemps jusqu'à la mort. […] Il semble que le poison des Borgia ait été un mélange d'acide arsénieux et d'alcaloïdes putrides. Il se préparait ainsi : on sacrifiait un porc, on saupoudrait d'acide arsénieux les organes abdominaux, et on attendait que la décomposition - retardée d'ailleurs par l'arsenic - fût complète. Puis, suivant qu'on comptait l'utiliser sous forme de poudre ou de gouttes, on n'avait plus qu'à faire sécher la masse putréfiée ou à en recueillir les liquides. »
  • « Rien n'est poison, tout est poison : seule la dose fait le poison. » Plus populairement : « L'excès nuit en tout. »16 (Theophrastus Bombastus von Hohenheim, dit Paracelse).
  • Comte Cain (série populaire de Mangas) : le personnage principal, le comte Cain C. Hargreaves, surnommé le comte des Poisons, résout des enquêtes et des crimes mystiques (tels que des supposés revenants, des personnes supposément assassinées par des malédictions et des fantômes, etc.) dans les années entourant l'époque de Jack l'Éventreur, grâce à ses poisons et à ses connaissances sur ceux-ci.
  • « Entre une empoisonneuse et une mauvaise cuisinière il n'y a qu'une différence d'intention. » Desproges.
  • Dans le roman Dune de Frank Herbert plusieurs poisons imaginaires sont utilisés. Il est d'ailleurs courant dans les familles nobles d'utiliser un détecteur de poison dans ce qu'ils vont manger. Le Dr Yueh trahit son suzerain, le duc Leto Atréides, au profit du baron Harkonnen .Il lui met un gaz toxique dans une fausse dent: le duc doit s'en servir pour tuer le baron. Le baron a un pressentiment qui lui sauve la vie. Le gaz toxique ne tue tue donc un conseiller du baron, Piter de Vries (et le duc aussi bien sûr). Par ailleurs Feyd-Rautha se bat souvent dans l'arène contre un adversaire (non volontaire) et déclare ouvertement utiliser des poisons; il va jusqu'à parfois décrire les effets au public une fois son adversaire à l'agonie. Il essaye aussi de tuer son oncle, le baron Harkonnen, en mettant une épine empoisonnée sur un jeune garçon (le baron est pédophile). Mais le baron est prévenu par Thufir Hawat. Ce dernier est également empoisonné à son insu par un « poison résiduel » (œuvre de Piter de Vries), une substance qui ne tue que si l'on cesse de donner régulièrement l'antidote.

Empoisonnement dans les films et séries

Références

  • Alain Rey, Le Dictionnaire Historique de la langue française, Le Robert, , p. 2819.
  • (de) Paracelsus, Septem Defensiones 1538 : Die dritte Defension wegen des Schreibens der neuen Rezepte (lire en ligne [archive]).
  • Francelyne Marano, Robert Barouki et Denis Zmirou, Toxique ? Santé et environnement, Buchet/Chastel, , p. 47.
  • « Quels sont les poisons naturels les plus mortels au monde ? » [archive], sur www.maxisciences.com, .
  • Charles De Sinner, Les grands poisons industriels : Le phosphore blanc des allumettes, vol. 1, Ch. de Sinner Éditeur, Impr. Corbaz, 1892
  • Office du travail, ministère du Commerce, de l'Industrie, des Postes et télégraphes, Poisons industriels, Éd. Office du travail, ministère du Commerce, de l'Industrie, des Postes et télégraphes, Imprimerie nationale, 1901, 449 p.
  • Direction du travail, Poisons industriels, Direction du travail (France) ; Imprimerie nationale, 1901, 449 p.
  • Theodor Sommerfeld, R. Fischer, Liste des poisons industriels et des autres substances dangereuses pour la santé, que l'on rencontre dans l'industrie, d'après les résolutions de l'Association internationale pour la protection légale des travailleurs, 1913
  • Georges Alfassa F. Alcan, Les poisons industriels : rapport présenté à l'Association internationale pour la protection légale des travailleurs, 1906, 34 p.
  • Notice sur les poisons industriels et les « pneumoconioses » (lésions du poumon par les poussières industrielles), Impr. provinciale, 1925, 32 p.
  • Tite-Live, Livre VIII, 18 [archive]
  • « Comité de soutien à JM Deperrois » [archive], sur sites.google.com (consulté le )
  • Bruno Ramirez de Palacios, Charles dit le Mauvais, roi de Navarre, comte d'Evreux, prétendant au trône de France, 2015, p. 481-483.
  • La Confidence des Ruggieri.
  • Lucrèce Borgia [archive], Gallica
  1. Forme originelle : « Alle Dinge sind ein Gift und nichts ist ohne Gift. Allein die Dosis macht, daß ein Ding kein Gift ist », c'est-à-dire littéralement : « Toute chose est un toxique et rien n'existe sans toxicité, seul le dosage fait qu'une chose n'est pas un poison. »

Voir aussi

Sur les autres projets Wikimedia :

Bibliographie

  • Jean de Maleissye, Histoire du poison, Paris, François Bourin, 1991, 415 p. (ISBN 978-2876860827).
  • Roland Villeneuve, Poisons et empoisonneurs célèbres, Paris, La Table ronde, 1968, 320 p.
  • Éric Birlouez, Histoire des poisons, des empoisonnements et des empoisonneurs, Rennes, Ouest-France, 2016, 128 p. (ISBN 978-2737368622).
  • Kirill Privalov, Poison : l'arme secrète de l'Histoire de l'Antiquité à aujourd'hui, Paris, Macha Publishing, 2020, 385 p. (ISBN 978-2-37437-057-6).

Articles connexes

Poison à neutrons

 

Un poison neutronique (également appelé « absorbeur de neutrons » ou « poison nucléaire ») est une substance ayant une grande section d'absorption de neutrons, et qui a de ce fait un impact significatif dans le bilan neutronique d'un réacteur nucléaire.

Dans les réacteurs nucléaires, l'absorption des neutrons a notamment un effet d'empoisonnement du réacteur. Cet empoisonnement est principalement dû à la capture de neutrons par des produits de fission de demi-vie courte dont le principal est le xénon 135 ou par des produits de fission de demi-vie plus longue ou stable comme le samarium 149 et le gadolinium 1571.

Plus spécifiquement, on désigne également par absorbant neutronique des éléments qui ne font qu'absorber des neutrons, sans autre transmutation ni radioactivité induite. Ceci exclut les isotopes fissiles et fertiles, ainsi que ceux qui se transmutent en isotopes radioactifs. Ces matériaux absorbant les neutrons, également appelés poisons, sont intentionnellement introduits dans certains types de réacteurs afin de réduire la forte réactivité du combustible frais. De tels éléments peuvent typiquement être employés comme constituants dans les barres de contrôle des réacteurs, ou comme poison consommable, pour en contrôler la réactivité. Ils peuvent également être employés comme barrière de radioprotection.

Certains de ces poisons, dits « poisons consommables », s'épuisent lorsqu'ils absorbent les neutrons pendant le fonctionnement du réacteur, ce qui permet de compenser la variation de réactivité du réacteur avec son taux de combustion. D'autres restent relativement constants, et servent à uniformiser le flux neutronique du réacteur.

Empoisonnement du réacteur

Principaux produits de fission transitoires poisons

 
Perte de réactivité due à l'augmentation transitoire de la concentration en xénon à l'arrêt d'un réacteur.

Les atomes formés lors de la fission sont tous en excès de neutrons par rapport à la vallée de la stabilité, ils capturent donc peu de neutrons. Toutefois certains des produits de fission générés au cours des réactions nucléaires ont une forte capacité d'absorption de neutrons, comme le xénon 135 (section efficace σ = 2 650 000 b (barns) et le samarium-149 (σ = 40 140 b). Parce que ces deux produits de fission poisons privent de neutrons le réacteur, ils auront un impact sur la réactivité.

L'empoisonnement par ces produits peut devenir tel que la réaction en chaîne ne puisse être maintenue en restant dans le domaine autorisé d'exploitation du réacteur. L'empoisonnement xénon est notamment l'un des facteurs ayant conduit à l'accident de Tchernobyl.

Empoisonnement xénon

Le xénon 135 en particulier, a un impact énorme sur le fonctionnement d'un réacteur nucléaire. La dynamique de l'empoisonnement au xénon constitue une variation importante de la réactivité du cœur qui a une importance majeure pour la stabilité du flux et la distribution géométrique de la puissance, en particulier dans les réacteurs de grandes dimensions.

Fission   → 6.4 %   135 T e   → 19.2 s β   135 I   → 6.58 h β   135 X e   → σ = 2650000 b + n   136 X e   {\displaystyle {\text{Fission}}\ {\xrightarrow[{6.4\%}]{}}\ ^{135}Te\ {\xrightarrow[{19.2s}]{\beta }}\ ^{135}I\ {\xrightarrow[{6.58h}]{\beta }}\ ^{135}Xe\ {\xrightarrow[{\sigma =2650000b}]{+n}}\ ^{136}Xe\ } ou   135 X e   → 9.17 h β   135 C s   {\displaystyle \ ^{135}Xe\ {\xrightarrow[{9.17h}]{\beta }}\ ^{135}Cs\ }

Pendant la période initiale de 4 à 6 heures suivant le changement de régime, l'ampleur et la vitesse des variations de concentration dépendent du niveau de puissance initiale et du changement de niveau de puissance. Plus le changement du niveau de puissance est important plus la variation de concentration du xénon-135 est grande. Après quelques heures, la concentration de xénon atteint un minimum, puis quand la quantité d'iode a suffisamment augmenté, le xénon augmente ensuite à son tour. Pendant les périodes de fonctionnement en régime permanent, à un niveau constant de flux de neutrons, la concentration de xénon-135 atteint sa valeur d'équilibre en 40 à 50 heures environ.

Au démarrage du réacteur, il n'y a initialement pas de xénon-135, qui n'apparaît qu'après quelques heures. Avec l'augmentation de la concentration en xénon, le réacteur perd de sa réactivité, ce qui peut le conduire à l'arrêt s'il ne dispose pas d'une réserve de réactivité suffisante.

Après un temps de fonctionnement, si la puissance du réacteur est augmentée, la production de xénon-135 reste initialement constante, parce que 95 % du xénon-135 provient de la désintégration de l'iode 135, qui a une demi-vie de 6,58 heures. En revanche, la concentration de xénon-135 diminue d'abord, parce que sa vitesse de dégradation augmente avec la puissance du réacteur. Comme le xénon-135 est un poison à neutrons, sa baisse de concentration augmente la réactivité du cœur, et donc la puissance : l'écart de régime tend à être instable, et doit être compensé par les barres de contrôle.

Lorsque la puissance du réacteur est diminuée, le processus est inversé2. De même que précédemment, la baisse de puissance provoque une accumulation du xénon 135 neutrophage, qui tend à diminuer encore plus la puissance. Cette perte de réactivité (qui atteint un maximum après environ 10 heures après l'arrêt du réacteur) est nommé "empoisonnement au xénon" et peut provoquer l'incapacité d'un réacteur à être redémarré, ou à être maintenu en fonctionnement à faible puissance. C'est en particulier le cas à l'arrêt du réacteur. La période de temps pendant laquelle le réacteur n'est pas en mesure de passer outre les effets du xénon 135 est appelée le délai xénon morts ou panne due au poison[réf. nécessaire].

Empoisonnement samarium

Le samarium 149 est un produit de fission relativement important qui apparaît dans la chaîne de désintégration du néodyme 149 et qui présente une grande section efficace de capture pour les neutrons lents et donc un effet d'empoisonnement. Il présente cependant une problématique un peu différente de celle rencontrée avec le xénon 135. En effet, si les chaînes de désintégration néodyme 149 > prométhium 149 > samarium 149 d'une part, et tellure 135 > iode 135 > xénon 135 d'autre part, sont largement similaires, trois différences sont à noter:

Toutefois, la quantité de prométhium 149 à l'équilibre est supérieure à celle de l'iode 135 Note 1

Fission   → 1.09 %   149 N d   → 1.728 h β   149 P m   → 53.08 h β   149 S m   → σ = 40140 b + n   150 S m   {\displaystyle {\text{Fission}}\ {\xrightarrow[{1.09\%}]{}}\ ^{149}Nd\ {\xrightarrow[{1.728h}]{\beta }}\ ^{149}Pm\ {\xrightarrow[{53.08h}]{\beta }}\ ^{149}Sm\ {\xrightarrow[{\sigma =40140b}]{+n}}\ ^{150}Sm\ }

La production du 149Pm est proportionnelle au flux neutronique; la production de Sm-149 est proportionnelle à la quantité de 149Pm présente; la consommation du 149Sm est également proportionnelle au flux ; la concentration de 149Sm à l'équilibre est donc indépendante du flux. Quand le réacteur est en fonctionnement, la concentration (et donc l'effet d'empoisonnement) atteint sa valeur d'équilibre en 500 heures environ (soit à peu près trois semaines). À l'arrêt du réacteur, cependant, le samarium cesse d'être consommé, et tout le prométhium 149 produit en amont (proportionnel au flux) se transforme en samarium. Pour un flux initial de 3,2 × 1013 n/cm2/s typique d'un réacteur à eau pressurisée, l'empoisonnement dû au samarium après un fonctionnement prolongé en puissance stable vaut environ 1 300 pcm. L'anti-réactivité supplémentaire apporté par la désintégration du prométhium 149 après un arrêt est de l'ordre de 500 pcm; cette perte est proportionnelle au flux, et peut avoir des valeurs plus élevées dans le cas d'un réacteur à haut flux.

Le réacteur doit être conçu pour disposer d'une marge en réactivité suffisante (retrait des barres de contrôle ou dilution du poison soluble) pour pouvoir être redémarré sans problème après un arrêt qui peut toujours être nécessaire de façon inopinée. Le délai procuré par la décroissance du prométhium 149 (plus de 72 heures) peut permettre un redémarrage intermédiaire, toutefois, la décroissance du xénon 135 qui intervient entre-temps au bout de 24 heures environ procure en pratique un gain de réactivité plus important que la perte due au samarium 149.

Empoisonnement gadolinium

Un autre isotope problématique qui s'accumule est le gadolinium 157, avec une section efficace microscopique de σ = 254 000 b. Sa production par fission (rendement proche de 0,004 %) est cependant plus de mille fois inférieure à celle de l'iode 135 (rendement de 6,4 % + 0,4 %). La valeur de la concentration à l'équilibre est égale à: . G d = γ g ∗ Σ f σ g . {\displaystyle .\;Gd={\gamma _{g}*\Sigma _{f} \over \sigma _{g}}\;.} elle est indépendante du flux et vaut 1,55 × 1013 at/cm3 dans un cœur de REP 900MWe. La section efficace macroscopique correspondante est égale à 3,936 × 10-6 cm-1, valeur très faible devant la section efficace macroscopique d'absorption totale qui vaut 0,1402 cm-1. L'empoisonnement exprimé en pcm est très faible.

Accumulations de produits de fission poisons

Il existe de nombreux autres produits de fission qui, en raison de leur concentration et de leur section d'absorption des neutrons thermiques, ont un effet néfaste sur le fonctionnement des réacteurs. Individuellement, ils sont de peu de conséquences, mais pris ensemble, ils ont un impact significatif. Ils sont souvent caractérisés comme des produits de fission poisons. Ils s'accumulent à un rythme moyen de 50 barns par désintégration dans le réacteur.[réf. souhaitée] L'accumulation des produits de fission poisons dans le combustible mène à une perte d'efficacité, et dans certains cas à l'instabilité. En pratique, l'accumulation de poisons dans le combustible nucléaire du réacteur est ce qui détermine la durée de vie du combustible nucléaire dans un réacteur: bien avant que toutes les fissions possibles aient eu lieu, l'accumulation des produits de fission à longue durée de vie absorbant les neutrons atténue la réaction en chaîne. C'est la raison pour laquelle le retraitement des déchets nucléaires est utile: le combustible nucléaire solide usé contient environ 97 % de la matière fissile présente dans le combustible nucléaire d'origine de fabrication récente. La séparation chimique des produits de fission restaure la qualité du combustible de sorte qu'il peut être utilisé à nouveau.

D'autres approches sont possibles pour retirer les produits de fission, notamment en utilisant du combustible solide poreux qui permet aux produits de fission de fuir3 ou du combustible liquide ou gazeux (réacteur à sels fondus, réacteur homogène aqueux). Cela réduit le problème de l'accumulation des produits de fission dans le combustible, mais pose des problèmes supplémentaires de sécurité d'enlèvement et d'entreposage des produits de fission.

Les autres produits de fission avec des sections d'absorption relativement élevées sont le 83Kr, 95Mo, 143Nd, 147Pm4. Au-dessus de cette masse, de nombreux isotopes ayant un nombre de masse pair ont des sections d'absorption, permettant à un noyau d'absorber de multiples neutrons en série. La fission d'actinides lourds produit plus de produits de fission lourd dans la gamme des lanthanides, de sorte que la section efficace d'absorption totale des neutrons des produits de fission est plus élevée5.

Dans un réacteur à neutrons rapides, la situation des produits de fission poisons peut différer considérablement car les sections efficace d'absorption des neutrons peuvent différer pour les neutrons thermiques et les neutrons rapides. Dans le réacteur RBEC-M, réacteur à neutrons rapides refroidis au plomb-bismuth). Les produits de fission classés par capture de neutrons (représentant plus de 5 % du total des produits de fission), par ordre: 133Cs, 101Ru, 103Rh, 99Tc, 105Pd et 107Pd dans le cœur, avec le 149Sm remplacement le 107Pd à la 6e place dans la couverture fertile6.

Produits de décroissance poisons

En plus des produits de fission poisons, d'autres matériaux se désintègrent dans les réacteurs en des matériaux qui agissent comme des poisons neutroniques. Un exemple de ceci est la désintégration du tritium en l'hélium 3. Comme le tritium a une demi-vie de 12,3 ans, normalement cette désintégration ne devrait pas affecter sensiblement l'exploitation des réacteurs, car le taux de désintégration du tritium est lent. Toutefois, si du tritium est produit dans un réacteur, puis reste dans le réacteur pendant un arrêt prolongé de plusieurs mois, une quantité suffisante de tritium peut se décomposer en l'hélium-3 et affecter négativement sa réactivité. L'intégralité de l'hélium-3 produit dans le réacteur pendant une période d'arrêt sera retirée lors du fonctionnement ultérieur par une réaction neutron-proton.

Poisons de contrôle

 
Section efficace d'absorption neutronique (en barns) du bore 10 (noir) et du bore 11 (bleu) par rapport à l'énergie du neutron incident (en eV).

Lorsqu'un réacteur doit fonctionner pendant une longue période de temps (cycle d'environ 18 mois dans les REP français), une quantité initiale de combustible, plus importante que celle nécessaire pour obtenir la masse critique exacte, est chargée dans le réacteur. Pendant le fonctionnement, cette quantité de combustible contenue dans le cœur diminue de façon monotone au fur et à mesure de sa consommation. La rétroaction positive due à l'excès de combustible en début de cycle, doit donc être équilibrée avec une rétroaction négative en ajoutant un matériau absorbant les neutrons.
L'utilisation de barres de contrôle mobiles contenant des matériaux absorbant les neutrons est une méthode, mais le contrôle de l'excès de réactivité du réacteur via seulement les barres de contrôle peut être difficile pour certaines conceptions particulières car il peut ne pas y avoir assez de place pour les barres ou leurs mécanismes, mais surtout parce que ce type de contrôle (par les barres) provoque une déformation du flux du réacteur qui peut engendrer des points chauds dans le cœur. C'est pourquoi dans les REP on préfère contrôler cet excès de réactivité, présent après un rechargement de combustible, en partant d'une concentration maximale en bore soluble en début de cycle, puis en faisant diminuer cette concentration en fonction de l'épuisement du combustible jusqu'au prochain rechargement.

Poisons consommables

Afin de contrôler la réactivité due aux grandes quantités de combustible en excès sans barres de contrôle, des poisons consommables sont chargés dans le cœur. Les poisons consommables sont des matériaux qui ont une section efficace d'absorption des neutrons élevée et qui sont transformés en matériaux ayant une section efficace d'absorption relativement faible lors de l'absorption des neutrons. En raison de l'épuisement du poison, la réactivité négative due au poison consommable diminue durant la vie du cœur. Idéalement, la réactivité négative de ces poisons devrait diminuer au même rythme que l'excès de réactivité du carburant au fur et à mesure de son épuisement. En outre, il est souhaitable que le poison consommable se transforme en un isotope non absorbant du même élément chimique afin de limiter les perturbations dans le matériau. Les poisons combustibles les plus utilisés sont les composés de bore ou de gadolinium. Ils forment un réseau de barres ou de plaques, ou sont ajoutés comme des éléments additionnels dans le combustible. Comme ils peuvent généralement être répartis plus uniformément que des barres de contrôle, ces poisons perturbent moins la distribution d'énergie dans le cœur. Du poison combustible peut aussi être chargé localement dans des endroits spécifiques du cœur pour façonner la forme ou contrôler la distribution du flux de neutrons et ainsi éviter un flux excessif et un pic d'énergie local dans certaines zones du réacteur. Cependant, la pratique actuelle est d'utiliser des poisons non-consommables pour ce dessein particulier7.

Poisons non consommables

Un poison non-combustible est celui qui maintient une valeur de réactivité négative constante au cours de la vie du cœur. Bien qu'aucun poison neutronique ne soit strictement non-combustible, certains matériaux peuvent être considérés comme des poisons non-combustibles, sous certaines conditions. Un exemple est hafnium. L'élimination (par absorption de neutrons) d'un isotope de hafnium conduit à la production d'un autre absorbeur de neutrons, et continue sur une chaine de cinq absorbeurs. Cette chaîne d'absorption fait que le poison bien que combustible se comporte comme un poison à long durée de vie, pouvant être considéré comme non-combustible8. Ce type de poison est spécialement intéressant pour les barres de contrôle d'urgence qui doivent conserver une efficacité constante sur toute la vie du cœur.

Poisons solubles

Les poisons solubles produisent une absorption des neutrons uniforme dans l'espace, lorsqu'ils sont dissous dans le liquide de refroidissement d'un réacteur nucléaire.

Le poison soluble le plus commun dans les réacteurs à eau pressurisée (REP) est l'acide borique, qui est souvent appelé bore soluble, ou tout simplement Solbor[réf. souhaitée]. L'acide borique présent dans le liquide de refroidissement absorbe les neutrons, provoquant une diminution de la réactivité. En faisant varier cette concentration en acide borique, un processus dénommé borication / dilution, la réactivité du cœur varie: lorsque la concentration en bore est augmentée (par borication), plus de neutrons sont absorbés ce qui diminue la réactivité ; a contrario, lorsque la concentration en bore est réduite (par dilution), la réactivité augmente.
L'évolution de la concentration de bore dans un REP est un processus lent et est principalement utilisé d'une part pour compenser l'épuisement du combustible ou l'accumulation de poison, mais aussi d'autre part, pour compenser l'empoisonnement xénon lors des variations de charge.

La variation de la concentration en bore permet de réduire le recours aux barres de contrôle, ce qui conduit à un flux de neutrons plus uniforme dans le cœur que celui obtenu par l'insertion des barres de contrôle. En effet, en contrôlant le flux par la variation de la concentration en bore, il n'y a pas de réduction de flux dans les régions du cœur situées aux environs des barres de contrôle insérées, et surtout pas d'augmentation du flux dans les régions du cœur éloignées de ces barres de contrôle (risque de point chaud), la répartition du flux dans le cœur est donc plus homogène. Cependant ce type de fonctionnement, notamment lors des variations de charge, a pour inconvénient majeur une augmentation du volume d'effluents produits lors des opérations de borication/dilution, ce volume étant limité par les capacités de stockage et les limites légales de rejets des centrales concernées9.

Dans les REP, la teneur en bore dissous dans l'eau primaire après un rechargement ainsi que les valeurs maximales d'insertion des barres de contrôle du réacteur, sont toutefois limitées par l'augmentation du coefficient de température du modérateur qui doit rester largement négatif (marge de sécurité). La dilatation de l'eau avec la température provoque une expulsion hors du cœur d'une quantité de bore d'autant plus grande que la teneur est élevée[pas clair] pouvant aller, sinon jusqu'à rendre positif le coefficient de température modérateur, mais du moins, risquer de réduire la marge de sécurité pour certains cœurs neufs7,10.

Les poisons solubles sont également utilisés dans les systèmes d'arrêt d'urgence via l'injection de sécurité destinée au noyage du cœur en situation accidentelle. En effet lors de telles situations, les automatismes, puis les opérateurs, peuvent injecter des solutions contenant des poisons neutroniques directement dans le liquide de refroidissement du réacteur. Diverses solutions, y compris polyborate de sodium et du nitrate de gadolinium (Gd(NO3)3·xH2O), sont utilisées7.

Absorbants notables

Les valeurs données ci-dessous de sections efficaces d'absorptions neutroniques (en barns) se réfèrent à des neutrons d'une énergie bien particulière, selon l'application considérée.

Notes

  1. Le produit du rendement de fission par la période est plus élevé dans le cas du prométhium 149 que dans le cas de l'iode 135: 1,09% × (53,08 + 1,728) contre (6,4% × 6,58). Les concentrations à l'équilibre sont respectivement dans le même rapport

Références

Bibliographie